Supplementary Information for

Synthesis and inhibitory activity against MurA and MurZ enzymes of 4H-pyrano[2,3- d] pyrimidine-1H-1,2,3-triazole hybrid compounds having piperidine and morpholine rings

Nguyen Dinh Thanh, *a Do Son Hai, ${ }^{\mathrm{a}, \mathrm{b}}$ Vu Ngoc Toan, ${ }^{\mathrm{a}, \mathrm{c}}$ Hoang Thi Kim Van, ${ }^{\mathrm{a}, \mathrm{d}}$ Nguyen Thi Kim Giang, ${ }^{\text {a,b }}$ Nguyen Minh Tri, ${ }^{\text {a,c }}$ Hoang Huu Anh, ${ }^{\text {a }}$ Duong Ngoc Toan, ${ }^{\text {a,e }}$
a. Faculty of Chemistry, University of Science (Vietnam National University, Hanoi), 19 Le Thanh Tong, Ha Noi, Viet Nam
b. Institute of Science and Technology, Ministry of Public Security of Vietnam, 47 Pham Van Dong, Cau Giay, Ha Noi, Vietnam
c. Faculty of Chemical Technology, Viet Tri University of Industry, Tien Kien, Lam Thao, Phu Tho, Viet Nam
d. Institute of New Technology, Military Institute of Science and Technology (Ministry of Military), Cau Giay, Ha Noi, Viet Nam
e. Faculty of Chemistry, Thai Nguyen University of Education, 20 Luong Ngoc Quyen, Thai Nguyen, Viet Nam.

1. General procedure for synthesis of substituted 3-(2-(piperidin-1-yl)ethoxy)/3-(2morpholinoethoxy)benzaldehydes (3a-g) and 4-(2-(piperidin-1-yl)ethoxy)/4-(2morpholinoethoxy)benzaldehydes (4a-g)

$\mathrm{R}_{2}=\mathrm{OM} \cdot \mathrm{OMe} \cdot x$	4c: $\mathrm{R}_{1}=\mathrm{R}, \mathrm{H} ; \mathrm{X}=\mathrm{O}$
3d: $\mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{OMe}, \mathrm{OMe}$; R	-
3d: ${ }^{1, R_{2}}=\mathrm{OMe}, \mathrm{H} ; X=\mathrm{CH}$ $3 \mathrm{e}: \mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{OEt} ; \mathrm{H}: X=\mathrm{CH}_{2}$	4d: ${ }_{4}$: $R_{1}^{1,}, R_{2}=O M e, H ; X=O$
3f: $\mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{OMe}, \mathrm{NO}{ }_{2}$	4f: $\mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{OL}, \mathrm{N}$
3g: $\mathrm{R}_{1}, \mathrm{R}_{2} \quad 2 ; \mathrm{X}=\mathrm{CH}_{2}$	4g: $\mathrm{R}_{1}, \mathrm{R}_{2} \quad \mathrm{Cl}_{2} ; \mathrm{X}=0$

Scheme 1S. Synthesis of some substituted benzaldehydes having 2-(piperidin-1-yl)ethoxy)-(3a-g) and 2-morpholinoethoxy groups ($\mathbf{4 a - g}$) at positions 3 and 4. Reaction conditions: (a) $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{Br}$, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$, CTAB , dried DMF, rt , 24 h to $50^{\circ} \mathrm{C}, 8 \mathrm{~h}$. (b) Piperidine or morpholine, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$, CTAB , dried acetone, $\mathrm{rt}, 24 \mathrm{~h}$, to $50^{\circ} \mathrm{C}$, 10 h .

Procedure. Appropriate substituted 3- or 4-hydroxylbenzaldehydes (1a-g, 5 mmol) were dissolved in dried DMF (100 mL), then anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(7.5 \mathrm{mmol})$ and CTAB (0.01 mmol) was added. 1.2-Dibromoethane (5.5 mmol) was added dropwise to the stirring reaction mixture for 20 min . The reaction mixture then continued stirring at room temperature for 24 h , and then at $50^{\circ} \mathrm{C}$ for 8 h . After DMF was removed under reduced pressure, water $(200 \mathrm{~mL})$ was added to dissolve inorganic salts. The separated precipitates were crystallized from 96% ethanol to afford corresponding substituted 2-bromoethylenoxybenzaldehydes 2a-g. These benzaldehydes received were pure enough for the next conversion reaction.

Then, each of these substituted benzaldehydes 2a-g ($1 \mathbf{m m o l}$) were dissolved in dried acetone $(20 \mathrm{~mL})$, following anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(1.5 \mathrm{mmol})$ and CTAB $(0.005 \mathrm{mmol})$ were added. Piperidine or morpholine (1.2 mmol) was added to stirring mixture. The obtained mixture continued stirring for 24 h at rt then $50^{\circ} \mathrm{C}$ for 10 h . Acetone was removed, and water $(50 \mathrm{~mL})$ was added to dissolve inorganic salts, filtered and washed with diluted HCl solution, crystallized from 96\% ethanol to afford the corresponding compounds, substituted 3-(2-(piperidin-1-yl)ethoxy)-/4-(2-(piperidin-1-yl)ethoxy)benzaldehydes (3a-g), and 3-(2-morpholinoethoxy)/4-(2-morpholinoethoxy)benzaldehydes (4a-g), respectively (Table 1S) with yields of $62-77 \%$.

Table 1S. Synthesis of (3a-g) and (4a-g)

Compd.	Substituents	Yield (\%)	M.p. $\left({ }^{\circ} \mathbf{C}\right)$
3a	4-Methoxy-3-(2-(piperidin-1-yl)ethoxy)	62	$127-129$
3b	4-Ethoxy-3-(2-(piperidin-1-yl)ethoxy)	65	$129-131$
3c	4-(2-(Piperidin-1-yl)ethoxy)	67	$111-113$
3d	3,5-Dimethoxy-4-(2-(piperidin-1-yl)ethoxy)	71	$132-134$
3e	3-Methoxy-4-(2-(piperidin-1-yl)ethoxy)	75	$137-139$
3f	3-Ethoxy-4-(2-(piperidin-1-yl)ethoxy)	77	$110-112$
$\mathbf{3 g}$	3-Ethoxy-5-nitro-4-(2-(piperidin-1-yl)ethoxy)	71	$130-132$
4a	4-Methoxy-3-(2-morpholinoethoxy)	73	$135-137$
4b	4-Ethoxy-3-(2-morpholinoethoxy)	69	$127-129$
4c	4-(2-Morpholinoethoxy)	72	$138-140$
4d	3,5-Dimethoxy-4-(2-morpholinoethoxy)	75	$132-134$

Compd.	Substituents	Yield (\%)	M.p. $\left({ }^{\circ} \mathbf{C}\right)$
$\mathbf{4 e}$	3-Methoxy-4-(2-morpholinoethoxy)	73	$140-142$
$\mathbf{4 f}$	3-Ethoxy-4-(2-morpholinoethoxy)	75	$143-145$
$\mathbf{4 g}$	3-Ethoxy-4-(2-morpholinoethoxy)-5-nitro	72	$145-147$

2. General procedure for synthesis of substituted ethyl 4H-pyran-3-carboxylates having piperidine ($5 \mathrm{a}-\mathrm{g}$) and morpholine rings ($6 \mathrm{a}-\mathrm{g}$)

3a,5a: $\mathrm{R}=\mathrm{OMe} ; \mathrm{X}=\mathrm{CH}_{2}$
3b,5b: $\mathrm{R}=\mathrm{OEt}$; $\mathrm{X}=\mathrm{CH}_{2}$
4a, $\mathbf{6 a}: \mathrm{R}=\mathrm{OMe} ; \mathrm{X}=\mathrm{O}$
4b,6b: $R=O E t ; X=O$

$\begin{aligned} 3 c, 5 \mathrm{c}: \mathrm{R}_{1}, \mathrm{R}_{2} & =\mathrm{H}, \mathrm{H} ; \mathrm{X}=\mathrm{CH} \\ & =\mathrm{Me}, \mathrm{OMe} ; \mathrm{R}=\mathrm{CH}\end{aligned}$
3d,5d: ${ }_{1, R} \mathrm{R}_{2}=\mathrm{OMe}, \mathrm{H} ; \mathrm{X}=\mathrm{CH} 2$
$3 \mathrm{e}, 5 \mathrm{~s}: \mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{OEt}, \mathrm{H} ; \mathrm{X}=\mathrm{CH} 2$
3f,5f: $: R_{1}, \mathrm{R}_{2}=\mathrm{OMe}, \mathrm{NO}$
$3 \mathrm{~g}, 5 \mathrm{~g}: \mathrm{R}_{1}, \mathrm{R}_{2}$
$={ }^{2} \mathrm{CH}_{2}$

4c,6c: $R_{1}{ }_{1}, R_{2}=O M e, O M e ; X=O$
4d,6d: ${ }_{1,}, \mathrm{R}_{2}=\mathrm{OMe}, \mathrm{H} ; \quad \mathrm{X}=\mathrm{O}$
4e,6e: $\mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{OEt}, \mathrm{H} ; \mathrm{X}=\mathrm{O}$
4f,6f: $\mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{OMe}, \mathrm{NO}$
$4 \mathrm{~g}, 6 \mathrm{~g}: \mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{OMe}, \mathrm{NO}{ }_{2} ; \mathrm{X}=\mathrm{O}$

Scheme 2S. Synthesis of substituted ethyl 6-amino-5-cyano-4-(4-aryl)-2-methyl-4H-pyran-3carboxylates having piperidine (5a-g) or morpholine rings ($\mathbf{6 a - g}$). Reaction conditions: (a) ethyl acetoacetate, malononitrile, THEAA, $96 \% \mathrm{EtOH}, 25^{\circ} \mathrm{C}, 20$ min ultrasonic.

Procedure. Ethyl 6-amino-5-cyano-2-methyl-4-(substituted phenyl)-4H-pyran-3-carboxylates ($\mathbf{5 a - g} \& \mathbf{6 a - g}$) were synthesized as follows. To a solution of appropriate substituted benzaldehydes $\mathbf{3 a - g}$ or $\mathbf{4 a - g}(5 \mathrm{mmol})$, ethyl acetoacetate ($5 \mathrm{mmol}, 0.77 \mathrm{~g}, 0.7 \mathrm{~mL}$), malononitrile ($5 \mathrm{mmol}, 0.33 \mathrm{~g}, 0.31 \mathrm{~mL}$) and in 96% ethanol (10 mL) was added THEAA (5 $\mathrm{mol} \%, 1.57 \mathrm{~g}) .{ }^{1}$ The reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 20 min . The separated solid product was filtered, washed by water and recrystallized from 96% ethanol to afford the titled ethyl esters 5a-g or $\mathbf{6 a - g}$ with yields of 63-75\% (Table 2S).

Table 2S. Synthesis of substituted ethyl 4H-pyran-3-carboxylates having piperidine (5a-g) and morpholine rings ($\mathbf{6 a - g}$)

Compd.	Substituents	Yield b	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	
		In $\%$	In grams	
		63	1.39	$58-60$
$\mathbf{5 a}$	4-Methoxy-3-(2-(piperidin-1-yl)ethoxy)	75	1.71	$59-61$
$\mathbf{5 b}$	4-Ethoxy-3-(2-(piperidin-1-yl)ethoxy)	66	1.36	$78-80$
$\mathbf{5 c}$	4-(2-(Piperidin-1-yl)ethoxy)	63	1.72	$67-69$
$\mathbf{5 d}$	3,5-Dimethoxy-4-(2-(piperidin-1-yl)ethoxy)	73	1.46	$62-64$
$\mathbf{5 e}$	3-Methoxy-4-(2-(piperidin-1-yl)ethoxy)	66	1.66	$65-67$
$\mathbf{5 f}$	3-Ethoxy-4-(2-(piperidin-1-yl)ethoxy)	73	1.90	$81-83$
$\mathbf{5 g}$	3-Ethoxy-5-nitro-4-(2-(piperidin-1-yl)ethoxy)	76	1.44	$62-64$
$\mathbf{6 a}$	4-Methoxy-3-(2-morpholinoethoxy)	65	1,71	$65-67$
$\mathbf{6 b}$	4-Ethoxy-3-(2-morpholinoethoxy)	75	1.40	$79-81$
$\mathbf{6 c}$	4-(2-Morpholinoethoxy)	68	1.68	$70-72$
$\mathbf{6 d}$	3,5-Dimethoxy-4-(2-morpholinoethoxy)	71	1.59	$64-66$
$\mathbf{6 e}$	3-Methoxy-4-(2-morpholinoethoxy)	72	1.67	$67-69$
$\mathbf{6 f}$	3-Ethoxy-4-(2-morpholinoethoxy)	73	68	1.71
$\mathbf{6 g}$	3-Ethoxy-4-(2-morpholinoethoxy)-5-nitro	$63-85$		

Some selected compounds were displayed below.
Ethyl 6-amino-5-cyano-4-(4-methoxy-2-(2-(piperidin-1-yl)ethoxy)phenyl)-2-methyl-4H-pyran-3-carboxylate (5a)
From 3a ($5 \mathrm{mmol}, 1.32 \mathrm{~g}$). Yield: $1.39 \mathrm{~g}(63 \%)$ of $\mathbf{5 a}$ as white solid. M.p. $58-60^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d), $\delta(\mathrm{ppm}): 7.24$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ phenyl), $6.77\left(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{NH}_{2}\right.$ pyran), 6.46 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ phenyl), 6.44 (s, 1H, H-3 phenyl), 4.59 (s, H-4 pyran), 4.17-4.11 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}$ in bridge $\left.4-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}<\right)$, 4.07-3.99 (m, $3 \mathrm{H}, \mathrm{H}_{\mathrm{b}}$ in bridge 4$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}<\& 3-\mathrm{CO}_{2} \mathbf{C H}_{2} \mathrm{CH}_{3}$ pyran), $3.82\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{OCH}_{3}\right.$ phenyl), $3.09-3.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right.$ in bridge 4- $\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}<$), 2.91-2.85 (m, $1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}$ in bridge $\left.4-\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}<\right)$, 2.54-2.52 (m, $4 \mathrm{H}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ piperidine), 2.29 (s, $3 \mathrm{H}, 2-\mathrm{CH}_{3}$ pyran), $1.57-1.51(\mathrm{~m}, 4 \mathrm{H}$, $2 \times \mathrm{NCH}_{2} \mathbf{C H}_{2} \mathrm{CH}_{2}$ piperidine), $1.45-1.41\left(\mathrm{~m}, 2 \mathrm{H}, 4 \mathrm{H}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathbf{C H}_{2}\right.$ piperidine), 1.21 (t,
$J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ pyran). ${ }^{13} \mathrm{C}$ NMR (125 MHz , Chloroform $-d$), $\delta(\mathrm{ppm})$: 166.8 , $160.6,160.1,158.1,154.6,129.1,124.5,119.1,109.2,107.7,100.2,66.8,60.8,56.7,55.6$, 54.8, 54.3, 34.0, 23.7, 23.1, 18.9, 14.4.

Ethyl 6-amino-5-cyano-2-methyl-4-(4-(2-(piperidin-1-yl)ethoxy)phenyl)-4H-pyran-3carboxylate (5c)
From $3 \mathbf{c}(5 \mathrm{mmol}, 1.17 \mathrm{~g})$. Yield: $1.36 \mathrm{~g}(66 \%)$ of $\mathbf{5 c}$ as white solid. M.p. $78-80^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d), $\delta(\mathrm{ppm}): 7.14$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 \& \mathrm{H}-6$ phenyl), 6.83 (d, $J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 \& \mathrm{H}-5$ phenyl), 6.77 (s, 2H, 6-NH2 pyran), 4.33 (s, H-4 pyran), 4.13-4.04 (m, $2 \mathrm{H}, \mathrm{H}_{\mathrm{a}}$ in $3-\mathrm{CO}_{2} \mathbf{C H}_{2} \mathrm{CH}_{3}$ pyran \& H_{a} in bridge $\left.4-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}<\right)$, 4.04-3.98(m, $2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}$ in 3$\mathrm{CO}_{2} \mathbf{C H}_{2} \mathrm{CH}_{3}$ pyran \& H_{b} in bridge $4-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}<$), $3.07\left(\mathrm{dt}, J=7.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right.$ in bridge $4-\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}<$), $2.86\left(\mathrm{dt}, J=7.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right.$ in bridge $4-\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}<$), 2.49-2.47 (m, $4 \mathrm{H}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ piperidine), $2.28\left(\mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CH}_{3}\right.$ pyran), $1.55-1.50(\mathrm{~m}, 4 \mathrm{H}$, $2 \times \mathrm{NCH}_{2} \mathbf{C H}_{2} \mathrm{CH}_{2}$ piperidine), $1.44-1.40\left(\mathrm{~m}, 2 \mathrm{H}, 4 \mathrm{H}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathbf{C H}_{2}\right.$ piperidine), 1.23 (t, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ pyran). ${ }^{13} \mathrm{C}$ NMR (125 MHz , Chloroform $-d$), $\delta(\mathrm{ppm}$): 166.8, $160.3,158.4,155.0,136.6,128.5,119.8,114.9,106.1,66.4,60.8,56.6,54.8,54.3,40.7,23.7$, 23.1, 19.1, 14.4 .

Ethyl 6-amino-5-cyano-2-methyl-4-(4-methoxy-2-(2-morpholinoethoxy)phenyl)-4H-pyran-3carboxylate ($\mathbf{6 a}$)
From $\mathbf{4 a}(5 \mathrm{mmol}, 1.33 \mathrm{~g})$. Yield: $1.44 \mathrm{~g}(65 \%)$ of $\mathbf{6 a}$ as white solid. M.p. $62-64^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d), $\delta(\mathrm{ppm}): 7.19$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ phenyl), $6.78\left(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{NH}_{2}\right.$ pyran), 6.45 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ phenyl), 6.43 (s, $1 \mathrm{H}, \mathrm{H}-3$ phenyl), 4.62 (s, H-4 pyran), 4.14-4.10 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}$ in bridge $\left.4-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}<\right)$, 4.08-3.99 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{b}}$ in bridge 4$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}<\& 2 \mathrm{H}$ in $3-\mathrm{CO}_{2} \mathbf{C H}_{2} \mathrm{CH}_{3}$ pyran), 3.82 (s, $3 \mathrm{H}, 4-\mathrm{OCH}_{3}$ phenyl), 3.72-3.70 (m, $4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$ morpholine), 2.82 (dt, $J=7.5,4.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}$ in bridge $4-\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}<$), 2.67-2.60 (m, 3H, H_{b} in bridge $4-\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}<\& 2 \times \mathrm{H}_{\mathrm{a}}$ in $\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}$ morpholine), 2.54-2.50 (m, $2 \mathrm{H}, 2 \times \mathrm{H}_{\mathrm{b}}$ in $\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}$ morpholine), $2.29\left(\mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CH}_{3}\right.$ pyran), $1.22(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 3 \mathrm{H}, 3-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathbf{C H}_{3}$ pyran). ${ }^{13} \mathrm{C}$ NMR (125 MHz , Chloroform- d), $\delta(\mathrm{ppm}$): $166.8,160.6$, $160.1,158.1,154.6,129.1,124.5,119.1,109.2,107.7,100.3,66.9,66.1,60.7,56.7,55.7,55.6$, 53.5, 34.0, 18.9, 14.4.

Ethyl 6-amino-5-cyano-2-methyl-4-(2-morpholinoethoxy)phenyl)-4H-pyran-3-carboxylate (6c)
From $4 \mathbf{c}(5 \mathrm{mmol}, 1.18 \mathrm{~g})$. Yield: $1.40 \mathrm{~g}(68 \%)$ of $\mathbf{6 c}$ as white solid. M.p. $79-81^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d), $\delta(\mathrm{ppm}): 7.14$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 \& \mathrm{H}-6$ phenyl), 6.83 (d, $J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 \& \mathrm{H}-5$ phenyl), 6.78 (s, 2H, 6-NH2 pyran), 4.33 (s, H-4 pyran), 4.13-3.70 (m,
$4 \mathrm{H}, 3-\mathrm{CO}_{2} \mathbf{C H}_{2} \mathrm{CH}_{3}$ pyran \& bridge $\left.4-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}<\right), 3.73-3.70\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$ morpholine), $2.86\left(\mathrm{dt}, J=7.5,4.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right.$ in bridge $\left.4-\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}<\right)$, 2.65-2.60 (m, $3 \mathrm{H}, \mathrm{H}_{\mathrm{a}}$ in bridge $4-\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}<\& 2 \times \mathrm{H}_{\mathrm{a}}$ in $\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}$ morpholine), $2.54-2.50\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{\mathrm{b}}\right.$ in $\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}$ morpholine), 2.28 ($\mathrm{s}, 3 \mathrm{H}, 2-\mathrm{CH}_{3}$ pyran), 1.23 (t, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathbf{C H}_{3}$ pyran). ${ }^{13} \mathrm{C}$ NMR (125 MHz , Chloroform- d), $\delta(\mathrm{ppm})$: 166.7, 160.3, 158.4, 155.0, 136.6, 128.5, $119.8,114.9,106.1,66.4,66.1,60.7,56.6,56.0,53.4,40.7,19.1,14.4$.

3. General procedure for synthesis of substituted ethyl 2,7-dimethyl-5-(substituted phenyl)-4-oxo-3,5-dihydro-4H-pyrano[2,3-d]pyrimidine-6-carboxylates (7a-g \& 8a-g)

5c,7c: $\mathrm{R}^{1}, \mathrm{R}_{2}=\mathrm{OMe}, \mathrm{OMe} ; \mathbb{X}=\mathrm{CH}$
5d,7d: ${ }_{1}, \mathrm{R}_{2}=\mathrm{OMe}, \mathrm{H} ; \mathrm{X}=\mathrm{CH} 2$
5e,7e: $\mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{OEt}, \mathrm{H} ; \mathrm{X}=\mathrm{CH} 2$
5f,7f: $\mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{OMe}, \mathrm{NO} \quad 2$
5g,7g: $\mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{OMe}, \mathrm{NO}{ }_{2} ; \mathrm{X}={ }^{2} \mathrm{CH}_{2}$

6a,8a: $R=O M e ; X=0$
6b,8a: $R=O E t ; X=0$

6c,8c: $R_{1} 1, R_{2}=\mathrm{OM}, \mathrm{H}, \mathrm{OMe} ; \mathrm{X}=\mathrm{O}$

6d,8d: ${ }_{1}, \mathrm{R}_{2}=\mathrm{OMe}, \mathrm{H} ; \mathrm{X}=\mathrm{O}$
6e,8e: $R_{1}, R_{2}=O E t, H ; X=0$
6f,8f: $\mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{OMe}, \mathrm{NO}$
$6 \mathbf{g}, \mathbf{8 g}: \mathrm{R}_{1}, \mathrm{R}_{2} \quad \mathrm{OM}_{2} ; \mathrm{X}=\mathrm{O}$

Scheme 3S. Synthesis of substituted ethyl 2,7-dimethyl-5-(substituted phenyl)-4-oxo-3,5-dihydro-4H-pyrano[2,3- d] pyrimidine-6-carboxylates (7a-g \& 8a-g). Reaction conditions: (a) Acetic anhydride, $\mathrm{TFA}, 100^{\circ} \mathrm{C}, 15 \mathrm{~min}$, then $\mathrm{rt}, 24 \mathrm{~h}$.

Procedure. Reaction mixture of corresponding 4 H -pyrans $\mathbf{5 a - g}$ or $\mathbf{6 a - g}(1 \mathrm{mmol})$, anhydride acetic $(1.25 \mathrm{~mL})$, and trifluoroacetic acid $(0.025 \mathrm{~mL})$ was heated under reflux at $100^{\circ} \mathrm{C}$ for 15 min , then cooled to room temperature and left overnight (24 h). ${ }^{2}$ Upon completion, as monitored using TLC plates, the mixture was poured into cold water $(10 \mathrm{~mL})$. The crude product of $4 H$-pyrano $[2,3-d]$ pyrimidine was filtered, washed by water $(3 \times 2.5 \mathrm{ml})$, recrystallized from 96% ethanol to afford corresponding compounds $\mathbf{7 a - g}$ or 8a-g with yields of 69-78\% (Table 3S).

Table 3S. Synthesis of substituted ethyl 2,7-dimethyl-5-(substituted phenyl)-4-oxo-3,5-dihydro- $4 H$-pyrano[2,3-d] pyrimidine-6-carboxylates having piperidine (7a-g) and morpholine rings (8a-g)

Compd.	Substituents	Yield b		M.p. ${ }^{\circ} \mathrm{C}$)
		In $\%$	In milligrams	
7a	4-Methoxy-3-(2-(piperidin-1-yl)ethoxy)	69	333	$134-136$
7b	4-Ethoxy-3-(2-(piperidin-1-yl)ethoxy)	72	358	$145-147$
7c	4-(2-(Piperidin-1-yl)ethoxy)	76	344	$141-142$
7d	3,5-Dimethoxy-4-(2-(piperidin-1-yl)ethoxy)	75	385	$137-139$
7e	3-Methoxy-4-(2-(piperidin-1-yl)ethoxy)	76	367	$146-148$
$\mathbf{7 f}$	3-Ethoxy-4-(2-(piperidin-1-yl)ethoxy)	75	373	$151-153$
$\mathbf{7 g}$	3-Ethoxy-5-nitro-4-(2-(piperidin-1-yl)ethoxy)	77	407	$165-167$
$\mathbf{8 a}$	4-Methoxy-3-(2-morpholinoethoxy)	71	344	$151-153$
$\mathbf{8 b}$	4-Ethoxy-3-(2-morpholinoethoxy)	72	359	$144-146$
$\mathbf{8 c}$	4-(2-Morpholinoethoxy)	78	355	$145-147$
$\mathbf{8 d}$	3,5-Dimethoxy-4-(2-morpholinoethoxy)	75	386	$153-155$
$\mathbf{8 e}$	3-Methoxy-4-(2-morpholinoethoxy)	75	364	$154-156$
$\mathbf{8 f}$	3-Ethoxy-4-(2-morpholinoethoxy)	73	364	$157-159$
$\mathbf{8 g}$	3-Ethoxy-4-(2-morpholinoethoxy)-5-nitro	69	366	$162-165$

Some selected remained compounds were represented below.
Ethyl 5-(4-methoxy-2-(2-(piperidin-1-yl)ethoxy)phenyl)-2,7-dimethyl-4-oxo-3,5-dihydro-4H-pyrano[2,3-d]pyrimidine-6-carboxylate (7a)
From 5a ($1 \mathrm{mmol}, 441 \mathrm{mg}$). Yield: $333 \mathrm{mg}(69 \%)$ of $\mathbf{7 a}$ as white solid. M.p.: $134-136^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d), $\delta(\mathrm{ppm})$: $11.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$ pyranopyrimidin-4-one), 7.21 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ phenyl), $6.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ phenyl), 6.38 (s, 1H, H-3 phenyl), 5.48 ($\mathrm{s}, \mathrm{H}-4$ pyranopyrimidin-4-one), $4.16-4.12\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right.$ in bridge $4-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}<$), 4.09-3.99 (m, 3H, H_{b} in bridge 4- $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}<\& 6-\mathrm{CO}_{2} \mathbf{C H}_{2} \mathrm{CH}_{3}$ pyranopyrimidin-4-one), $3.82\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{OCH}_{3}\right.$ phenyl), $3.06\left(\mathrm{dt}, J=7.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right.$ in bridge $\left.4-\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}<\right), 2.88$
(dt, $J=7.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}$ in bridge $4-\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}<$), $2.57-2.54\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ piperidine), $2.38\left(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{CH}_{3}\right.$ pyranopyrimidin-4-one), $2.28\left(\mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CH}_{3}\right.$ pyranopyrimidin-4-one), $1.57-1.51\left(\mathrm{~m}, ~ 4 \mathrm{H}, 2 \times \mathrm{NCH}_{2} \mathbf{C H}_{2} \mathrm{CH}_{2}\right.$ piperidine), $1.46-1.41(\mathrm{~m}, 2 \mathrm{H}, 4 \mathrm{H}$, $2 \times \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathbf{C H}_{2}$ piperidine), $1.21\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, 6-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathbf{C H}_{3}\right.$ pyranopyrimidin-4-one). ${ }^{13} \mathrm{C}$ NMR (125 MHz , Chloroform- d), δ (ppm): 167.0, 162.6, 160.5, 159.6, 157.4, 157.3, 154.3, $129.0,124.8,109.2,109.1,100.3,98.3,66.8,60.8,55.6,54.8,54.4,31.6,23.8,23.1,20.7,18.4$, 14.4.

Ethyl 5-(2-(piperidin-1-yl)ethoxy)phenyl)-2,7-dimethyl-4-oxo-3,5-dihydro-4H-pyrano[2,3-d]pyrimidine-6-carboxylate (7c)

From $5 \mathbf{c}(1 \mathrm{mmol}, 411 \mathrm{mg})$. Yield: $344 \mathrm{mg}(76 \%)$ of 7 c as white solid. M.p.: $141-142^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d), $\delta(\mathrm{ppm})$: 11.85 (s, 1H, NH pyranopyrimidin-4-one), 7.18 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 \& \mathrm{H}-6$ phenyl), 6.82 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 \& \mathrm{H}-5$ phenyl), 5.87 (s, H-4 pyranopyrimidin-4-one), 4.15-4.11 (m, 1H, H_{a} in bridge 4- $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}<$), 4.08-3.99 (m, 3H, H_{b} in bridge $4-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}<\& 2 \mathrm{H}$ in $6-\mathrm{CO}_{2} \mathbf{C H}_{2} \mathrm{CH}_{3}$ pyranopyrimidin-4-one), 3.05 (dt, $J=$ $7.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}$ in bridge $\left.4-\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}<\right), 2.86\left(\mathrm{dt}, J=7.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right.$ in bridge 4$\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}<$), 2.55-2.53 (m, $4 \mathrm{H}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ piperidine), $2.38\left(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{CH}_{3}\right.$ pyranopyrimidin-4-one), 2.29 (s, $3 \mathrm{H}, 2-\mathrm{CH}_{3}$ pyranopyrimidin-4-one), $1.57-1.51$ (m, 4H, $2 \times \mathrm{NCH}_{2} \mathbf{C H}_{2} \mathrm{CH}_{2}$ piperidine), $1.45-1.41\left(\mathrm{~m}, 2 \mathrm{H}, 4 \mathrm{H}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathbf{C H}_{2}\right.$ piperidine), $1.20(\mathrm{t}$, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, 6-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathbf{C H}_{3}$ pyranopyrimidin-4-one). ${ }^{13} \mathrm{C}$ NMR (125 MHz , Chloroform- d), $\delta(\mathrm{ppm}): 166.9,162.7,159.0,158.5,157.7,154.3,136.7,128.5,115.0,107.9,100.1,66.5,60.8$, 54.9, 54.4, 36.2, 23.7, 23.1, 20.6, 18.9, 14.4.

Ethyl 5-(4-methoxy-2-(2-morpholinoethoxy)phenyl)-2,7-dimethyl-4-oxo-3,5-dihydro-4H-pyrano[2,3-d]pyrimidine-6-carboxylate (8a)

From $\mathbf{6 a}(1 \mathrm{mmol}, 443 \mathrm{mg})$. Yield: $344 \mathrm{mg}(71 \%)$ of $\mathbf{8 a}$ as white solid. M.p.: $151-153^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform- d), $\delta(\mathrm{ppm})$: 11.75 (s, 1H, NH pyranopyrimidin-4-one), 7.22 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ phenyl), 6.42 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ phenyl), 6.38 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-3$ phenyl), 5.48 ($\mathrm{s}, \mathrm{H}-4$ pyranopyrimidin-4-one), 4.16-4.11 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}$ in bridge $4-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}<$), 4.09-3.98 (m, 3H, Hb in bridge 4- $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}<\& 2 \mathrm{H}$ in $6-\mathrm{CO}_{2} \mathbf{C H}_{2} \mathrm{CH}_{3}$ pyranopyrimidin-4one), $3.82\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{OCH}_{3}\right.$ phenyl), $3.72-3.69\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$ morpholine), 2.82 (dt, $J=$ $7.5,4.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}$ in bridge $4-\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}<$), $2.64\left(\mathrm{dt}, J=7.5,4.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right.$ in bridge 4$\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}<$), $2.58-2.51\left(\mathrm{~m}, 4 \mathrm{H}, \quad \mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}\right.$ morpholine), $2.38\left(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{CH}_{3}\right.$ pyranopyrimidin-4-one), $2.28\left(\mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CH}_{3}\right.$ pyranopyrimidin-4-one), $1.22(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}, 6-$ $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathbf{C H}_{3}$ pyranopyrimidin-4-one). ${ }^{13} \mathrm{C}$ NMR (125 MHz , Chloroform- d) $\delta(\mathrm{ppm})$: 167.0,
$162.6,160.5,159.6,157.4,157.3,154.3,129.0,124.8,109.2,109.1,100.4,98.3,66.8,65.9$, 60.8, 55.6, 55.4, 53.5, 31.6, 20.7, 18.4, 14.4 .

Ethyl 2,7-dimethyl-5-(4-(2-morpholinoethoxy)phenyl)-4-oxo-3,5-dihydro-4H-pyrano[2,3-d]pyrimidine-6-carboxylate (8c)
From $\mathbf{6 c}(1 \mathrm{mmol}, 413 \mathrm{mg})$. Yield: $355 \mathrm{mg}(78 \%)$ of $\mathbf{8 c}$ as white solid. M.p.: $145-147^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform- d), $\delta(\mathrm{ppm})$: 11.85 (s, 1H, NH pyranopyrimidin-4-one), 7.18 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 \& \mathrm{H}-6$ phenyl), 6.82 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 \& \mathrm{H}-5$ phenyl), 5.89 (s, H-4 pyranopyrimidin-4-one), 4.13-4.09 (m, $1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}$ in bridge $4-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}<$), 4.07-3.99 (m, 3H, H_{b} in bridge $4-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}<\& 2 \mathrm{H}$ in $6-\mathrm{CO}_{2} \mathbf{C H}_{2} \mathrm{CH}_{3}$ pyranopyrimidin-4-one), 3.73-3.71 (m, $4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$ morpholine), 2.82 (dt, $J=7.5,4.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}$ in bridge $4-\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}<$), 2.65-2.60 (m, 3H, H_{a} in bridge $4-\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}<\& 2 \times \mathrm{H}_{\mathrm{a}}$ in $\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}$ morpholine), 2.55-2.50 (m, $2 \mathrm{H}, 2 \times \mathrm{H}_{\mathrm{b}}$ in $\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}$ morpholine), 2.38 ($\mathrm{s}, 3 \mathrm{H}, 7-\mathrm{CH}_{3}$ pyranopyrimidin-4one), 2.29 ($\mathrm{s}, 3 \mathrm{H}, 2-\mathrm{CH}_{3}$ pyranopyrimidin-4-one), 1.20 (t, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, 6-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathbf{C H}_{3}$ pyranopyrimidin-4-one). ${ }^{13} \mathrm{C}$ NMR (125 MHz , Chloroform- d), $\delta(\mathrm{ppm}): 166.9,162.7,159.0$, 158.5, 157.7, 154.3, 136.7, 128.5, 115.0, 107.9, 100.1, 66.6, 65.9, 60.8, 55.8, 53.5, 36.2, 20.6, 18.9, 14.4.

4. Molecular simulations

4.1. Induced fit docking results

The low-energy conformation thus obtained was used for the modelling studies (Table 4S). Some other obtained docking results for ligands 12d,12e, and 13b as well as UD1 (Uridine diphosphate N-acetylglucosamine) were displayed below.

Table 4S. Docking glide scores of ligands 12d,12e, and 13b, and UD1 on the receptor of enzyme 1UAE

Ligands	IFD Score (kcal/mol)
12d	-912.020
12e	-916.268
13b	-916.071

(A) $\mathrm{R}=3,5-\mathrm{diOMe}-4-(2-$ (Piperidin-1-yl)-
ethoxy) (12d)
(B) $\mathrm{R}=3$-OMe-4-(2-(Piperidin-1-yl)ethoxy)
(12e)

(C) R = 4-OEt-3-Morpholinoethoxy (13b)

(D) UD1

Figure 1S. Two-dimensional diagram in ligand interaction of ligands 12d (A), 12e (B), 13b (C), and UD1 (D) in active site of enzyme 1UAE showed active ligand-protein interactions of the ligand-interactions. The intermolecular hydrogen bond is colored in magenta line.

Ligand-Protein Contacts

Figure 2S. Plot represent ligand-protein contacts in 13b/1UAE complex during MD simulation.

References

1. D. S. Hai, N. T. T. Ha, D. T. Tung, C. T. Le, H. H. Anh, V. N. Toan, H. T. K. Van, D. N. Toan, N. T. K. Giang, N. T. T. Huong and N. D. Thanh, Chem. Pap., 2022, 76, 52815292.
2. N. D. Thanh, D. S. Hai, N. T. T. Ha, D. T. Tung, C. T. Le, H. T. K. Van, V. N. Toan, D. N. Toan and L. H. Dang, Bioorg. Med. Chem. Lett., 2019, 29, 164-171.

5. Selected NMR and mass spectra of compounds $12 \mathrm{a}-\mathrm{g}$ \& $13 \mathrm{a}-\mathrm{g}$

Ethyl 3-(1-((2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl))-1H-1,2,3-triazol-4-yl)methyl-2,7-dimethyl-5-(4-methoxy-3-(2-(piperidin-1-yl)ethoxy)phenyl)-4-oxo-3,5-dihydro-4H-pyrano[2,3-d]pyrimidin-6-carboxylate (12a)

Ethyl 3-(1-((2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl))-1H-1,2,3-triazol-4-yl)methyl-2,7-dimethyl-5-(4-ethoxy-3-(2-(piperidin-1-yl)ethoxy)phenyl)-4-oxo-3,5-dihydro-4H-pyrano[2,3-d]pyrimidin-6-carboxylate (12b)

Ethyl 3-(1-((2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl))-1H-1,2,3-triazol-4-yl)methyl-2,7-dimethyl-5-(4-(2-(piperidin-1-yl)ethoxy)phenyl)-4-oxo-3,5-dihydro-4H-pyrano[2,3-
d]pyrimidin-6-carboxylate (12c)

Ethyl 3-(1-((2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl))-1H-1,2,3-triazol-4-yl)methyl-2,7-dimethyl-5-(3,5-dimethoxy-4-(2-(piperidin-1-yl)ethoxy)phenyl)-4-oxo-3,5-dihydro-4H-pyrano[2,3-d]pyrimidin-6-carboxylate (12d)

Ethyl 3-(1-((2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl))-1H-1,2,3-triazol-4-yl)methyl-2,7-dimethyl-5-(3-methoxy-4-(2-(piperidin-1-yl)ethoxy)phenyl)-4-oxo-3,5-dihydro-4H-pyrano[2,3-d]pyrimidin-6-carboxylate (12e)

Ethyl 3-(1-((2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl))-1H-1,2,3-triazol-4-yl)methyl-2,7-dimethyl-5-(3-methoxy-5-nitro-4-(2-(piperidin-1-yl)ethoxy)phenyl)-4-oxo-3,5-dihydro-4H-pyrano[2,3-d]pyrimidin-6-carboxylate (12f)

Ethyl 3-(1-((2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl))-1H-1,2,3-triazol-4-yl)methyl-2,7-dimethyl-5-(3-ethoxy-4-(2-(piperidin-1-yl)ethoxy)phenyl)-4-oxo-3,5-dihydro-4H-pyrano[2,3-d]pyrimidin-6-carboxylate (12g)

Ethyl 3-(1-((2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl))-1H-1,2,3-triazol-4-yl)methyl-2,7-dimethyl-5-(4-methoxy-3-(2-morpholinoethoxy)phenyl)-4-oxo-3,5-dihydro-4H-pyrano[2,3-d]pyrimidin-6-carboxylate (13a)

Ethyl 3-(1-((2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl))-1H-1,2,3-triazol-4-yl)methyl-2,7-dimethyl-5-(4-ethoxy-3-(2-morpholinoethoxy)phenyl)-4-oxo-3,5-dihydro-4H-pyrano[2,3-d]pyrimidin-6-carboxylate (13b)

Ethyl 3-(1-((2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl))-1H-1,2,3-triazol-4-yl)methyl-2,7-dimethyl-5-(4-(2-morpholinoethoxy)phenyl)-4-oxo-3,5-dihydro-4H-pyrano[2,3-d]pyrimidin-6-carboxylate (13c)

Ethyl 3-(1-((2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl))-1H-1,2,3-triazol-4-yl)methyl-2,7-dimethyl-5-(3,5-dimethoxy-4-(2-morpholinoethoxy)phenyl)-4-oxo-3,5-dihydro-4H-pyrano[2,3-d]pyrimidin-6-carboxylate (13d)

Ethyl 3-(1-((2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl))-1H-1,2,3-triazol-4-yl)methyl-2,7-dimethyl-5-(3-methoxy-4-(2-morpholinoethoxy)phenyl)-4-oxo-3,5-dihydro-4H-pyrano[2,3-d]pyrimidin-6-carboxylate (13e)

Ethyl 3-(1-((2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl))-1H-1,2,3-triazol-4-yl)methyl-2,7-dimethyl-5-(3-methoxy-4-(2-morpholinoethoxy)-5-nitrophenyl)-4-oxo-3,5-dihydro-4H-pyrano[2,3-d]pyrimidin-6-carboxylate (13f)

[^0]Ethyl 3-(1-((2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl))-1H-1,2,3-triazol-4-yl)methyl-2,7-dimethyl-5-(3-ethoxy-4-(2-morpholinoethoxy)phenyl)-4-oxo-3,5-dihydro-4H-pyrano[2,3-d]pyrimidin-6-carboxylate (13g)

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										ppm										

[^0]:

