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X-ray photoelectron spectroscopy (XPS) of pristine g-C;N,4, a-MnQO,, PANI, and 20-G/0.5-

P/M composite.
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Fig. S1 XPS of (a) survey spectrum of pristine g-CsN4, a-MnO,, PANI, and 20-G/0.5-P/M
composite, (b) C 1s of pristine g-C;N,;, PANI, and 20-G/0.5-P/M composite, (c) Mn 2p of
pristine a-MnQO,, and 20-G/0.5-P/M composite, and (d) O 1s of pristine a-MnO,, and 20-G/0.5-
P/M composite.

Electron Paramagnetic spectroscopy (EPR):

The electron spin resonance (ESR) test is further employed to explore whether the
semiconductors g-CsNy4, 0-MnQO,, and composite 20-G/0.5-P/M are ESR active or not (i.e., to
know whether these materials possess reactive species like hydroxide radicle, superoxide radicle,
and free electron). As depicted in Fig. S2 (a, b, c) there occurs peaks in the ESR spectrum of
these materials under light only, which confirms that these materials are ESR active and will be
involved in the degradation of the TC antibiotic as already explained in Fig. 11d. The intensity of
peaks in light, of these materials increases in the following order, a-MnO, < g-C;N;< 20-G/0.5-
P/M, which indicates that 20-G/0.5-P/M composite is the most ESR active out of the three

materials mentioned above.
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Fig. S2 ESR spectra of (a) a-MnO,, (b) g-C3Ny4, and (¢) 20-G/0.5-P/M catalysts in presence of
light.



TA Experiments.

Terephthalic acid (TA) experiments were conducted in order to find out the formation of
hydroxyl radicals in the reaction mixture. Generally, TA reacts with generated *OH radicals to
form 2-hydroxyterephthalic acid complex (TAOH) and formation of this complex can be
encountered at A= 429 nm [1]. In the given Fig. S3, an intense peak is observed at A= 429 which
confirms the formation and generation of *OH radicals and supports the degradation process. As
shown in Fig. S3, it is obvious that the amount of hydroxyl radicals produced by each
photocatalyst increased with increasing irradiation time as shown in the PL intensity [2]. It was
found that the amount of hydroxyl radicals generated by a-MnO, was lower than that of g-C5Ny
photocatalyst synthesized in this study. Furthermore, the concentration of hydroxyl radical
produced by 20-G/0.5-P/M nanocomposites was significantly greater than that of individual
photocatalysts i.e., a-MnO, and g-C;N, due to the simultaneous trapping of the generated
electrons from the valence and conduction bands by the two dopants. The order of concentration
of hydroxyl radicals formed during photocatalysis was 20-G/0.5-P/M > 20-G/M > g-C3N4> a-
MnO, photocatalysts. The observed activity and OH radicals may be ascribed to the presence of
visible radiation. This further corroborates the results of the photocatalytic performance shown in
Figs. S4 and revealed that the amount of surface bound OH radicals formed is the function of the
synthesized material. The differences in the concentration of hydroxyl radicals produced by each

sample may be linked to specific surface areas, band gap, and the radiation time.
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Fig. S3 PL spectra observed using 20-G/M/0.5-P nanocomposites at different time intervals.
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Fig. S4 Concentration of HTA by various photocatalysts upon irradiation of visible light.

Photocatalytic stability and durability of the catalyst:

The stability of the catalyst was confirmed by XRD, FTIR, XPS, FESEM and TEM
characterization techniques after five consecutive cycles were conducted to further evidence the
higher stability of the composites. In Figures S5, S6, S7, S8, and S9, no obvious changes in
morphology or structure of used 20-G/0.5-P/M were observed. In Fig. S5, it could be seen that
the characteristic diffraction peaks of 20-G/0.5-P/M still maintained in the XRD patterns of used
sample and no additional diffraction peaks were observed. In Fig. S6, there occurs no change in
the FTIR spectra of the 20-G/0.5-P/M composite even after the five consecutive cycles of
photodegradation of TC antibiotics. In Fig. S7, the peaks of Mn 2p, C 1s, N Is and O 1s were
detected in the XPS spectrum of used 20-G/0.5-P/M composite and appears without any
alteration and no any additional peak was observed. In Fig. S8 and Fig S9, in which there were

no obvious changes in the morphology as displayed by the FESEM and TEM images of the used
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samples, strongly verifying the higher stability of 20-G/0.5-P/M composite during the

photocatalytic process.
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Fig. S5 XRD of 20-G/0.-P/M before and after photodegradation of TC.
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Fig. S6 FTIR of 20-G/0.-P/M catalyst before and after photodegradation of TC.
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Fig. S7 XPS of 20-G/0.-P/M catalyst before and after photodegradation of TC.



Fig. S8 FESEM of 20-G/0.-P/M catalyst before and after photodegradation of TC.
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Fig. S9 TEM of 20-G/0.-P/M catalyst before and after photodegradation of TC.



Mineralization of the TC antibiotic:

The mechanism of decomposition of organic pollutants in the antibiotic wastewater by a-MnO,-
based photocatalysts usually follows three main pathways such as transfer of pollutant from the
liquid bulk to the catalyst surface, followed by adsorption of organic pollutants onto the surface
of the catalyst, in this case 20-G/0.5-P/M nanocomposite and lastly photodegradation of organic
pollutants by the catalyst. The degree of mineralization of antibiotics in the wastewater by the
present photocatalyst as a function of reaction time is expressed in the form of TOC [3-5]. The
% TOC removal by the action of the 20-G/0.5-P/M with respect to irradiation time. For instance,
in Fig. S10, the TOC removal was approximately 96% under artificial visible light irradiation
after 60 min. This implies that the photocatalytic degradation of TC achieved the desired
mineralization effect. The reason of enhanced photocatalytic behaviour of the nanocomposites

may be linked to the nature of the pollutants, duration of the reaction, surface area, and the band

gap energy.
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Fig. S10 TOC removal from the local antibiotic wastewater under visible light (experimental

conditions: 50 mg/1 cm?, 60 min, 150 rpm, visible light intensity 125 W).
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