Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Dual Responsive Ionic Liquid-Based Polymeric Hydrogel: A Promising Drug Delivery Vehicle for the Treatment of Breast Cancer

Raviraj Pansuriya^a, Tapas Patel^a, Sanjay Mehra^{b,c}, Arvind Kumar^{b,c}, Omar A. El Seoud^d, Sugam Kumar^e, Vinod K Aswal^e, Suresh Kumar Kailasa^a, Naved I. Malek^{a,d*}

^aIonic Liquids Research laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat- 395007, Gujarat, India.

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India.

°Salt and Marine Chemicals Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of

Scientific and Industrial Research, G. B. Marg, Bhavnagar, 364002, Gujarat, India

dInstitute of Chemistry, University of São Paulo, 05508-000 São Paulo, SP, Brazil

eSolid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India

Corresponding Author e-mail: <u>navedmalek@chem.svnit.ac.in</u>

Figure S1: Morphology of hydrogel through SEM images where (a) Schematic representation of the fiber and pores like structure; (b and c) pores within the fibrous matrix; (d) fibers network within the hydrogel.

Figure S2: Self-healing property of hydrogel (a) dye contain hydrogel; (b) cut hydrogel with different dye; (c) self-healing of hydrogel; (d) inverted microscopic image of self-healing of hydrogel; (e) Stretchability of the hydrogel.

Figure S3: (a) Photos of Dry hydrogel, swilling in 5.0 and 7.4 pH buffer solution, respectively; (b) deswelling of hydrogel; (c) Swelling of hydrogel at 5.0 and 7.4 pH.

Figure S4: Degradation of hydrogel in PBS with (a) 7.4 pH and (b) 5.0 pH.

Figure S5: Gel-sol Transition (a) Image of gel-sol transition in tube inversion method (b)
 Shown Modulus Vs Temperature graph of hydrogel; (c) Shown FTIR spectra of Hydrogel at 25 ±2.5 °C (Red line) and 62 ±3.5 °C (Black line).

Figure S6: (a) Absorbance measurement of hydrogel before and after loading of 5-FU; (b) Inverted microscopic images of 5-FU loaded hydrogel.

Figure S7:

Calibration curve of 5-FU.

Table S1: In vitro drug release data that are fitted into different kinetic models.

Order	r ² @	r ² @	r ² @	r ² @
	рН-5	рН-5	рН-7.4	рН-7.4
	25 °C	37 °C	25 °C	37 °C
Zero order	0.9422	0.9088	0.9577	0.9824
First Order	0.8658	0.7232	0.9516	0.8879
Higuchi	0.9770	0.9563	0.9636	0.9959
Hixson Crowell	0.8951	0.8605	0.9611	0.9290