Copper diaryl-dithiocarbamate complexes and their application as single source precursors (SSPs) for copper-sulfide nanomaterials

Electronic Supplementary Information (ESI)

Table S1. Crystallographic data and structural refinement details

Table S2. Particle size of copper sulfides as calculated using the Scherrer equation

Table S3. TGA and DSC results for dry [Cu{S₂CN(p-tolyl)₂}₂] (**2b**) heating rate 10 °C/min.

Fig. S1 CVs of 2b (1 mM) in 0.1 M $[Bu_4N][PF_6]$ in CH_2Cl_2 at -78 °C at a scan rates of 0.02-0.5 Vs⁻¹

Fig. S2 ¹H NMR (in CDCl₃) of $[Cu{S_2CN(p-tolyl)_2}]$ (3)

Fig. S3 ${}^{13}C{}^{1}H$ NMR (in CDCl₃) of [Cu{S₂CN(p-tolyl)₂}] (**3**)

Fig.S4. ¹H NMR (in dmso-d⁶) of $[Cu{S_2CN(p-tolyl)_2}]$ (3)

Fig. S5 ${}^{13}C{}^{1}H$ NMR (in dmso-d⁶) of [Cu{S₂CN(p-tolyl)₂}] (3)

Fig. S6 ¹H NMR (in CDCl₃) of $[Cu{S_2CN(p-tolyl)_2}(PPh_3)_2]$ (4)

Fig. S7 ¹³C{¹H} NMR (in CDCl₃) of [Cu{S₂CN(p-tolyl)₂}(PPh₃)₂] (4)

Fig. S8 ${}^{31}P{}^{1}H$ NMR (in CDCl₃) of [Cu{S₂CN(p-tolyl)₂}(PPh₃)₂] (4)

Fig. S9 SAED pattern of $Cu_{1.84}S$ nanoparticles produced from 2b by HU

Fig. S10 SEM of nanomaterials formed from dry decomposition of 2b

Fig. S11 PXRD pattern of nanomaterials formed from dry decomposition of 2b compared to those from HU and HI

Fig. S12 EDX map of Cu_{1.94}S (worm-like morphology) produced from 2b by dry decomposition

Complex	2b	2c	4	
Empirical formula	$C_{30}H_{28}N_2S_4Cu$	$C_{30}H_{28}CuN_2O_4S_4$	$C_{51}H_{44}CuNP_2S_2$	
Formula weight (Å)	608.32	672.32	860.47	
Temperature (K)	100(1)	150(2)	100(2)	
Crystal system	monoclinic	monoclinic	monoclinic	
Space group	$P2_1/c$	$P2_1/n$	$P2_1/c$	
Unit cell dimensions				
a (Å)	11.1900(6)	9.7567(2)	18.9452(4)	
b (Å)	17.2006(6)	19.5651(2)	12.0938(2)	
c (Å)	14.9006(5)	16.5460(2)	19.1076(5)	
$\alpha(^{\circ})$	90	90	90	
$\beta(^{\circ})$	97.231(4)	99.443(1)	105.406(3)	
γ (°)	90	90	90	
Volume (Å ³)	2845.2(2)	3115.68(8)	4220.61(17)	
Z	4	4	4	
Density (calculated) (g/cm ³)	1.420	1.433	1.354	
Absorption coefficient	3.994	3.804	0.730	
F(000)	1260	1388	1792	
Crystal size (mm)	0.07 imes 0.05 imes 0.01	0.28 imes 0.04 imes 0.03	$0.38 \times 0.025 \times 0.02$	
θ Range for data collection	7.886 to 140.898	7.052 to 145.842	4.04 to 57.436	
(°)	$-13 \le h \le 12$,	$-11 \le h \le 11$	$-25 \le h \le 25$	
Index ranges	$-20 \le k \le 20,$	$-23 \le k \le 24$	$-15 \le k \le 15$	
	$-17 \le l \le 17$	$-20 \le l \le 20$	$-25 \le 1 \le 25$	
Reflections collected	21888	51710	51312	
Independent reflections	5239	6144	9554	
Data / restraints / parameters	5239/0/338	6144/0/482	9554/0/516	
Goodness-of-fit on F^2	1.040	1.076	1.026	
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0667,$	$R_1 = 0.0300,$	$R_1 = 0.0834,$	
	$wR_2 = 0.1516$	$wR_2 = 0.0761$	$wR_2 = 0.1866$	
<i>R</i> indices (all data)	$R_1 = 0.0999,$	$R_1 = 0.0338,$	$R_1 = 0.1369,$	
	$wR_2 = 0.1694$	$wR_2 = 0.0786$	$wR_2 = 0.2143$	
Largest peak and hole(e.Å-3)	0.72/-0.59	0.47/-0.37	1.40/-0.78	

 Table S1. Crystallographic data and structural refinement details

Table S2. Particle size of copper sulfides as calculated using the Scherrer equation

SSP	Conditions	Phases	Crystallite size (nm)
2b	OLA, 140 °C, HU	CuS	24
2b	OLA, 230 °C, HU	Cu _{1.84} S	36
2b	OLA, 230 °C, HI	Cu _{1.84} S	35
3	OLA, 230 °C, HU	Cu _{1.84} S	60
3	OLA, 230 °C, HI	Cu _{1.84} S	50

Particle size of copper sulfides calculated by Scherrer equation, $D = \overline{\beta cos\theta}$

(Where, D = Crystallite size, Scherrer constant K = 0.9, Wavelength of the X-ray source, $\gamma = 0.15406$ nm, $\beta = FWHM$, $2\theta = peak$ position)

Table S3. TGA and DSC results for dry $[Cu{S_2CN(p-tolyl)_2}_2]$ (2b) heating rate 10 °C/min.

Solvent	TGA		DSC	TGA weight
	Decomposition steps	Decomposition	T °C	loss (%)
	T °C	Temperature		
		(Middle point) T °C		
Solventless	55.6-247.7	205.2	100	3.6
	249.8-297.4	266.5	270	56.6
	300.5-594.1	351.9		14.8

Kγ

Fig. S1 CVs of 2b (1 mM) in 0.1 M [Bu₄N][PF₆] in CH₂Cl₂ at -78 °C at a scan rates of 0.02-0.5 Vs⁻¹

Fig. S2 ¹H NMR (in CDCl₃) of $[Cu{S_2CN(p-tolyl)_2}]$ (3)

Fig. S3 ${}^{13}C{}^{1}H$ NMR (in CDCl₃) of [Cu{S₂CN(p-tolyl)₂}] (3)

Fig.S4. ¹H NMR (in dmso-d⁶) of $[Cu{S_2CN(p-tolyl)_2}]$ (3)

Fig. S5 ${}^{13}C{}^{1}H$ NMR (in dmso-d⁶) of [Cu{S₂CN(p-tolyl)₂}] (3)

Fig. S6 ¹H NMR (in CDCl₃) of $[Cu{S_2CN(p-tolyl)_2}(PPh_3)_2]$ (4)

Fig. S7 ${}^{13}C{}^{1}H$ NMR (in CDCl₃) of [Cu{S₂CN(p-tolyl)₂}(PPh₃)₂] (4)

Fig. S8 ³¹P{¹H} NMR (in CDCl₃) of [Cu{S₂CN(p-tolyl)₂}(PPh₃)₂] (4)

Fig. S9 SAED pattern of $Cu_{1.84}S$ nanoparticles produced from 2b by HU

Fig. S10 SEM of nanomaterials formed from dry decomposition of 2b

Fig. S11 PXRD pattern of nanomaterials formed from dry decomposition of **2b** compared to those from HU and HI

Fig. S12 EDX map of Cu_{1.94}S (worm-like morphology) produced from 2b by dry decomposition

Fig. S13 TGA profile of $[Cu{S_2CN(p-tolyl)_2}_2]$ (2b)

10