Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary information

Computational Design of Efficient Near-Infrared TADF Emitters with Hotexciton Characteristics

Jesni M Jacob^a, Pralok K. Samanta^b and Mahesh Kumar Ravva^{a*}

^aDepartment of Chemistry, SRM University-AP, Amaravati, India 522240

^bDepartment of Chemistry, School of Science, GITAM University, Hyderabad, India 502329

*corresponding author: <u>mahesh.r@srmap.edu.in</u>

Table of contents

Table S1	Calculated dihedral angles between donor and AZ units, HOMO and LUMO energies as obtained from M06-2X/6-31G** level of theory in the gas phase.
Figure S1	Structure of CAT-1.
Figure S2	HOMO-LUMO wavefunctions for the newly designed molecules using M06-2X/6-31G** level of theory.
Table S2	Calculated five lowest singlets, and five lowest triplets state energies as obtained from M06-2X/6-31G** level of theory in the gas phase. All values are in eV.
Figure S3	Representation of calculated Δr indices for the molecules under study.
Figure S4	Spatial distribution of the hole and electron wavefunctions corresponds to the singlet (S_6-S_{10}) and triplet (T_6-T_{10}) excited states of the three potential molecules.
Table S3	Calculated Δr indices of the newly designed molecules for the S_n and T_m states in Å units.
Table S4	Charge transfer ratio among fragments of potential hot-exciton NIR-TADF emitters.
Figure S5	Optimized geometries of NZ and AZ based newly designed molecules (D1NZPZH, D1NZFPZH, D1NZCNPZH, D1AZPZH, D1AZFPZH, and D1AZCNPZH) as determined at the M06-2X/6-31G** level of theory.

Table S5	Calculated excited state energies, absorption wavelengths and HOMO and LUMO gap of some inspirational molecules towards D-A1-A2 type molecules as obtained from M06-2X/6-31G** level of theory in the gas phase.
Figure S6	Comparison of geometrical parameters, RMSD, k_{nr} and k_r of CAT-1 and D1AZ2BZH at M06-2X/6-31G** level of theory.
Figure S7	Comparison of new structures based on thiophene, tetrazine and nitrogen substituted D1AZ2BZH at M06-2X/6-31G** level of theory.

Table S1. Calculated dihedral angles between donor and AZ units, HOMO and LUMO energies as obtained from M06-2X/6-31G** level of theory in the gas phase.

	Dihedral	HOMO		HOMO-
Compounds	angle $D - A\mathbf{Z}$	HOMO (eV)	LUMO (eV)	gap (eV)
D1AZ2BZH	85.81	-6.09	-2.95	-3.14
D1AZ2BZF	85.05	-6.15	-3.07	-3.08
D1AZ2BZCN	83.36	-6.32	-3.42	-2.90
D1AZ2PZH	84.18	-6.25	-3.28	-2.97
D1AZ2PZF	82.22	-6.32	-3.41	-2.91
D1AZ2PZCN	78.33	-6.48	-3.73	-2.75
D1AZBZPZH	85.50	-6.15	-3.09	-3.06
D1AZBZPZF	84.56	-6.22	-3.22	-3.00
D1AZBZPZCN	82.61	-6.37	-3.54	-2.83
D1AZPZBZH	84.80	-6.18	-3.12	-3.06
D1AZPZBZHF	83.70	-6.24	-3.24	-3.00
D1AZPZBZCN	80.94	-6.41	-3.59	-2.82

Figure S1. Structure of CAT-1.

Figure S2. HOMO-LUMO wavefunctions for the newly designed molecules using M06-2X/6-31G** level of theory.

	S	S	S	S	S	т	т	т	т	т
	S 1	52	53	54	55	11	12	13	14	15
D1AZ2BZH	1.90	2.03	2.63	3.30	3.57	0.63	1.98	2.03	2.77	2.83
D1AZ2BZF	1.91	1.98	2.62	3.38	3.56	0.64	1.95	1.99	2.76	2.93
D1AZ2BZCN	1.77	1.94	2.77	3.43	3.49	0.66	1.77	2.03	2.72	2.88
D1AZ2PZH	1.81	2.02	2.90	3.00	3.22	0.74	1.81	2.08	2.66	2.70
D1AZ2PZF	1.74	2.02	2.82	3.25	3.34	0.75	1.74	2.05	2.64	2.86
D1AZ2PZCN	1.58	2.00	2.72	2.94	3.01	0.75	1.58	2.04	2.59	2.61
D1AZBZPZH	1.92	1.97	2.74	3.50	3.60	0.66	1.94	2.02	2.74	3.00
D1AZBZPZF	1.86	1.97	2.69	3.51	3.60	0.68	1.86	2.00	2.72	3.03
D1AZBZPZCN	1.70	1.95	2.83	3.03	3.25	0.68	1.70	2.03	2.65	2.71
D1AZPZBZH	1.90	2.01	2.78	3.27	3.44	0.72	1.91	2.05	2.70	2.96
D1AZPZBZF	1.84	2.01	2.76	3.38	3.40	0.73	1.84	2.04	2.68	2.92
D1AZPZBZCN	1.66	2.00	2.91	3.14	3.32	0.74	1.66	2.07	2.65	2.80

Table S2. Calculated five lowest singlets, and five lowest triplets state energies as obtained from M06-2X/6-31G** level of theory in the gas phase. All values are in eV.

Figure S3. Representation of calculated Δr indices for the molecules under study.

D1AZ2BZH

D1AZBZPZH

Figure S4. Spatial distribution of the hole and electron wavefunctions corresponds to the singlet (S_6-S_{10}) and triplet (T_6-T_{10}) excited states of the three potential molecules.

	S1	S2	S3	S 4	S5	S6	S7	S8	S 9	S10	T1	Т2	Т3	Т4	Т5	Т6	Т7	Т8	Т9	T10
D1AZ2BZH	1.86	7.36	2.60	3.67	2.73	1.75	6.05	8.06	2.43	9.15	1.43	2.98	7.32	2.48	3.41	1.72	2.28	1.64	1.88	1.36
	LE	СТ	HLCT	HLCT	HLCT	LE	СТ	СТ	HLCT	СТ	LE	HLCT	СТ	HLCT	HLCT	LE	HLCT	LE	LE	LE
D1AZ2BZF	3.01	6.15	2.83	3.39	2.64	2.49	5.44	7.57	8.50	3.13	1.43	6.33	4.12	2.11	3.15	2.02	2.09	1.64	1.92	1.46
	HLCT	СТ	HLCT	HLCT	HLCT	HLCT	СТ	СТ	СТ	HLCT	LE	СТ	HLCT	HLCT	HLCT	HLCT	HLCT	LE	LE	LE
D1AZ2BZCN	7.49	1.67	2.22	3.54	3.72	4.85	7.47	4.26	9.92	5.77	1.39	7.70	2.43	1.70	2.65	3.05	2.54	2.22	2.96	6.47
	СТ	LE	HLCT	HLCT	HLCT	HLCT	СТ	HLCT	СТ	СТ	LE	СТ	HLCT	LE	HLCT	HLCT	HLCT	HLCT	HLCT	СТ
D1AZ2PZH	7.47	1.73	1.98	2.95	3.23	3.59	10.36	4.09	4.61	7.00	1.61	7.45	2.34	2.10	1.87	3.02	4.32	2.93	3.21	8.20
	СТ	LE	LE	HLCT	HLCT	HLCT	СТ	HLCT	HLCT	СТ	LE	СТ	HLCT	HLCT	LE	HLCT	HLCT	HLCT	HLCT	СТ
D1AZ2PZF	7.41	1.72	2.26	4.26	3.23	9.79	5.14	1.22	3.47	7.42	1.61	7.39	2.51	1.85	3.11	1.33	2.74	2.40	3.19	8.69
	СТ	LE	HLCT	HLCT	HLCT	СТ	HLCT	LE	HLCT	СТ	LE	СТ	HLCT	LE	HLCT	LE	HLCT	HLCT	HLCT	СТ
D1AZ2PZCN	7.43	1.69	6.06	9.07	0.83	2.67	6.57	3.54	7.39	1.94	1.68	7.26	2.96	3.98	1.62	0.63	10.72	2.22	2.95	3.74
	СТ	LE	СТ	СТ	LE	HLCT	СТ	HLCT	СТ	LE	LE	СТ	HLCT	HLCT	LE	LE	СТ	HLCT	HLCT	HLCT
D1AZBZPZH	5.38	3.74	2.21	2.93	3.11	3.24	3.97	5.82	6.27	10.52	1.42	7.48	2.63	1.83	3.15	2.29	3.29	2.41	1.66	1.72
	HLCT	HLCT	HLCT	HLCT	HLCT	HLCT	HLCT	СТ	СТ	СТ	LE	СТ	HLCT	LE	HLCT	HLCT	HLCT	HLCT	LE	LE
D1AZBZPZF	7.22	1.90	2.36	3.08	4.95	5.24	7.42	2.32	10.57	7.81	1.43	7.60	2.62	2.28	3.17	2.58	2.01	1.78	1.75	3.33

Table S3. Calculated Δr indices of the newly designed molecules for the S_n and T_m states in Å units.

	СТ	LE	HLCT	HLCT	HLCT	HLCT	СТ	HLCT	СТ	СТ	LE	СТ	HLCT	HLCT	HLCT	HLCT	HLCT	LE	LE	HLCT
D1AZBZPZCN	7.68	1.49	2.25	4.90	11.59	6.00	3.71	6.86	3.10	7.46	1.39	7.68	2.50	3.43	2.31	2.73	1.34	12.20	2.47	3.10
	СТ	LE	HLCT	HLCT	СТ	СТ	HLCT	СТ	HLCT	СТ	LE	СТ	HLCT	HLCT	HLCT	HLCT	LE	СТ	HLCT	HLCT
D1AZPZBZH	7.11	2.08	2.85	3.42	2.59	3.63	4.61	1.04	6.31	6.62	1.60	7.52	2.72	2.34	2.46	2.34	2.39	2.19	3.81	0.99
	СТ	HLCT	HLCT	HLCT	HLCT	HLCT	HLCT	LE	СТ	СТ	LE	СТ	HLCT	HLCT	HLCT	HLCT	HLCT	HLCT	HLCT	LE
D1AZPZBZF	7.28	1.88	3.15	3.42	2.91	3.84	6.20	6.01	0.94	8.35	1.61	7.48	2.97	1.89	2.68	2.03	2.59	1.02	2.39	2.17
	СТ	LE	HLCT	HLCT	HLCT	HLCT	СТ	СТ	LE	СТ	LE	СТ	HLCT	LE	HLCT	HLCT	HLCT	LE	HLCT	HLCT
D1AZPZBZCN	7.48	1.66	2.63	4.50	9.32	2.65	6.34	5.25	5.41	1.26	1.57	7.46	2.74	2.65	3.21	1.10	2.24	9.92	1.53	2.75
	СТ	LE	HLCT	HLCT	СТ	HLCT	СТ	HLCT	HLCT	LE	LE	СТ	HLCT	HLCT	HLCT	LE	HLCT	СТ	LE	HLCT

									D	LAZ2BZH									
S ₁	1	2	3	S ₂	1	2	3	S₃	1	2	3	S ₄	1	2	3	S ₅	1	2	3
1	0.000	0.032	0.003	1	0.000	0.850	0.104	1	0.000	0.004	-0.001	1	0.000	0.006	-0.002	1	0.000	0.032	0.005
2		0.000	-0.135	2		0.000	-0.003	2		0.000	-0.457	2		0.000	-0.624	2		0.000	0.056
3			0.000	3			0.000	3			0.000	3			0.000	3			0.000
S ₆	1	2	3	S ₇	1	2	3	S ₈	1	2	3	S ₉	1	2	3	S ₁₀	1	2	3
1	0.000	0.033	0.024	1	0.000	0.819	0.101	1	0.000	0.812	0.115	1	0.000	0.004	0.001	1	0.000	0.587	0.388
2		0.000	0.160	2		0.000	-0.001	2		0.000	0.005	2		0.000	-0.097	2		0.000	0.005
3			0.000	3			0.000	3			0.000	3			0.000	3			0.000
T ₁	1	2	3	T ₂	1	2	3	T₃	1	2	3	T ₄	1	2	3	T ₅	1	2	3
1	0.000	0.013	0.002	1	0.000	0.096	0.018	1	0.000	0.003	0.039	1	0.000	0.013	0.002	1	0.000	0.005	-0.002
2		0.000	-0.001	2		0.000	-0.164	2		0.000	0.005	2		0.000	0.080	2		0.000	-0.625
3			0.000	3			0.000	3			0.000	3			0.000	3			0.000
T ₆	1	2	3	T ₇	1	2	3	T ₈	1	2	3	T ₉	1	2	3	T ₁₀	1	2	3
1	0.000	0.011	0.005	1	0.000	0.001	0.001	1	0.000	0.031	0.000	1	0.000	0.018	0.005	1	0.000	-0.012	0.001
2		0.000	-0.088	2		0.000	-0.064	2		0.000	0.000	2		0.000	0.038	2		0.000	0.000
3			0.000	3			0.000	3			0.000	3			0.000	3			0.000

Table S4. Charge transfer ratio among fragments of potential hot-exciton NIR-TADF emitters.

									D	1AZ2BZI	F								
S ₁	D1 1 2 3 S2 1 2 3 S3 1 2 3 S4 1 2 3 S5 1 2 3																		
1	0.000	0.170	0.020	1	0.000	0.712	0.085	1	0.000	0.004	-0.001	1	0.000	0.022	0.001	1	0.000	0.049	0.008
2		0.000	-0.096	2		0.000	-0.022	2		0.000	-0.488	2		0.000	-0.607	2		0.000	0.067

3			0.000	3			0.000	3			0.000	3			0.000	3			0.000
S ₆	1	2	3	S ₇	1	2	3	S ₈	1	2	3	S ₉	1	2	3	S ₁₀	1	2	3
1	0.000	0.086	0.069	1	0.000	0.705	0.104	1	0.000	0.807	0.113	1	0.000	0.496	0.351	1	0.000	0.085	0.036
2		0.000	0.175	2		0.000	-0.011	2		0.000	0.004	2		0.000	0.016	2		0.000	-0.044
3			0.000	3			0.000	3			0.000	3			0.000	3			0.000
T ₁	1	2	3	T ₂	1	2	3	T₃	1	2	3	T ₄	1	2	3	T ₅	1	2	3
1	0.000	0.014	0.002	1	0.000	0.622	0.088	1	0.000	0.257	0.046	1	0.000	0.007	0.002	1	0.000	0.025	0.002
2		0.000	0.0004	2		0.000	-0.107	2		0.000	-0.133	2		0.000	0.098	2		0.000	-0.598
3			0.000	3			0.000	3			0.000	3			0.000	3			0.000
T ₆	1	2	3	T 7	1	2	3	T 8	1	2	3	T۹	1	2	3	T ₁₀	1	2	3
1	0.000	0.010	0.005	1	0.000	0.007	0.006	1	0.000	0.031	-0.0002	1	0.000	0.028	0.009	1	0.000	-0.001	0.006
2		0.000	-0.090	2		0.000	-0.069	2		0.000	-0.0001	2		0.000	0.008	2		0.000	0.0001
3			0.000	3			0.000	3			0.000	3			0.000	3			0.000

									D1AZ	BZPZH									
S ₁	1	2	3	S ₂	1	2	3	S ₃	1	2	3	S ₄	1	2	3	S ₅	1	2	3
1	0.000	0.511	0.060	1	0.000	0.367	0.043	1	0.000	0.005	-0.001	1	0.000	0.002	0.005	1	0.000	0.071	0.035
2		0.000	-0.026	2		0.000	-0.036	2		0.000	-0.400	2		0.000	0.319	2		0.000	0.207
3			0.000	3			0.000	3			0.000	3			0.000	3			0.000
S ₆	1	2	3	S ₇	1	2	3	S ₈	1	2	3	S ₉	1	2	3	S ₁₀	1	2	3
1	0.000	-0.00003	-0.013	1	0.000	0.177	0.035	1	0.000	0.658	0.123	1	0.000	0.675	0.122	1	0.000	0.464	0.510
2		0.000	-0.081	2		0.000	-0.374	2		0.000	-0.070	2		0.000	-0.055	2		0.000	0.009
3			0.000	3			0.000	3			0.000	3			0.000	3			0.000

T ₁	1	2	3	T ₂	1	2	3	T ₃	1	2	3	T ₄	1	2	3	T₅	1	2	3
1	0.000	0.008	0.001	1	0.000	0.845	0.100	1	0.000	0.041	0.007	1	0.000	0.004	0.001	1	0.000	0.004	0.009
2		0.000	-0.036	2		0.000	-0.012	2		0.000	-0.143	2		0.000	0.113	2		0.000	0.224
3			0.000	3			0.000	3			0.000	3			0.000	3			0.000
T ₆	1	2	3	T ₇	1	2	3	T ₈	1	2	3	T۹	1	2	3	T ₁₀	1	2	3
1	0.000	0.006	0.001	1	0.000	-0.0001	-0.018	1	0.000	0.010	-0.006	1	0.000	0.032	0.001	1	0.000	0.002	0.004
2		0.000	-0.180	2		0.000	-0.035	2		0.000	-0.469	2		0.000	0.00002	2		0.000	0.088
3			0.000	3			0.000	3			0.000	3			0.000	3			0.000

Figure S5. Optimized geometries of NZ and AZ based newly designed molecules (D1NZPZH, D1NZFPZH, D1NZCNPZH, D1AZPZH, D1AZFPZH, and D1AZCNPZH) as determined at the M06-2X/6-31G** level of theory.

Table S5. Calculated excited state energies, absorption wavelengths and HOMO and LUMO gap of some inspirational molecules towards D-A1-A2 type molecules as obtained from M06-2X/6-31G** level of theory in the gas phase.

	S ₁	S ₂	S ₃	S ₄	S ₅	T ₁	T ₂	T ₃	T ₄	T ₅	S ₁ - T ₁	T ₂ -T ₁	Absorption $\boldsymbol{\lambda}$	HLG
	(eV)	(eV)	(nm)	(eV)										
D1NZPZH	2.08	2.85	3.03	3.48	3.83	1.42	2.05	2.53	2.90	3.29	0.66	0.64	597	3.23
D1NZFPZH	2.06	2.92	3.15	3.53	3.82	1.53	2.05	2.61	2.80	3.30	0.53	0.52	602	3.20
D1NZCNPZH	1.63	2.73	2.98	3.25	3.40	1.33	1.63	2.44	2.84	3.16	0.30	0.30	761	2.78
D1AZPZH	1.86	2.02	2.66	3.25	3.50	0.76	1.85	1.93	2.64	3.09	1.10	1.10	667	3.03
D1AZFPZH	1.81	2.11	2.67	3.28	3.48	0.82	1.81	1.97	2.60	3.13	0.99	0.99	684	2.98
D1AZCNPZH	1.51	2.16	2.56	3.16	3.32	0.78	1.50	1.91	2.69	3.03	0.73	0.72	820	2.68

Figure S6. Comparison of geometrical parameters, RMSD, k_{nr} and k_r of CAT-1 and D1AZ2BZH at M06-2X/6-31G** level of theory.

Figure S7. Comparison of new structures based on thiophene and tetrazine substituted D1AZ2BZH at M06-2X/6-31G** level of theory.