Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Hydroboration of imines: Intermolecular vs. intramolecular hydride transfer

Siyuan Zhai^a, Dragoslav Vidović^a and Milena Petković^b

^aSchool of Chemistry, Monash University, Clayton, 2800 Australia

^bUniversity of Belgrade – Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia

Copies of selected NMR spectra:

- Figure S1. ¹H NMR spectrum for **2b-d**₃.
- Figure S2. ¹³C{¹H} NMR spectrum for **2b-d**₃.
- Figure S3. ¹¹B NMR spectrum for **2b-d**₃.
- Figure S4. ¹H NMR spectrum for **2c-d**₃.
- Figure S5. ¹³C{¹H} NMR spectrum for **2c-d**₃.
- Figure S6. ¹¹B NMR spectrum for **2c-d**₃.
- Figure S7. ¹H NMR spetrum for **3b-d**₃.
- Figure S8. ¹³C{¹H} NMR spetrum for **3b-d**₃.
- Figure S9. ¹¹B NMR spectrum for **3b-d**₃.
- Figure S10. ¹H NMR spetrum for **3c-d**₃.
- Figure S11. ¹³C{¹H} NMR spetrum for **3c-d**₃.
- Figure S12. ¹¹B NMR spetrum for **3c-d**₃.
- Figure S13: Overlay of the reaction between 2b and $2c-d_3$ and (a) with 3b (b) and 3c (c).

Figure S14. ¹H NMR of conversion of 2c to 3c under "open system".

Figure S15. Studied imines (**1E**, top), transition states for alkyl group rotation (middle), and the corresponding rotamers (**1Z**, bottom).

Figure S16. Two transition states for a reaction between **2Eb** and **2Ec** (left and middle) and a transition state for a reaction between **2Zb** and **2Zc** (right).

Copies of selected NMR spectra:

Figure S1. ¹H NMR spectrum for **2b-d**₃.

Figure S2. ¹³C{¹H} NMR spectrum for **2b-d**₃.

Figure S3. ¹¹B NMR spectrum for **2b-d**₃.

Figure S4. ¹H NMR spectrum for **2c-d₃**.

Figure S5. ¹³C{¹H} NMR spectrum for **2c-d**₃.

Figure S6. ¹¹B NMR spectrum for **2c-d**₃.

Figure S8. ¹³C{¹H} NMR spetrum for **3b-d**₃.

Figure S10. ¹H NMR spetrum for **3c-d**₃.

Figure S13: Overlay of the reaction between 2b and $2c-d_3$ and (a) with 3b (b) and 3c (c).

Figure S14. ¹H NMR of conversion of **2c** to **3c** under "open system".

Figure S15. Studied imines (**1E**, top), transition states for alkyl group rotation (middle), and the corresponding rotamers (**1Z**, bottom).

Figure S16. Two transition states for a reaction between **2Eb** and **2Ec** (left and middle) and a transition state for a reaction between **2Zb** and **2Zc** (right).