Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Magnetic induced construction of core-shell architecture Fe₃O₄@TiO₂-Co nanocomposites for effective photocatalytic

degradation of tetracycline

Qingmei Tan,^{‡a} Wensheng Zhang,^{‡b} Tianren Liu,^a Ying He,^b Yuangong Ma,^b Yingxin Yang^a, Dongxue Han^{a, c}* Dongdong Qin^a* and Li Niu^a

^a School of Chemistry and Chemical Engineering Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analyti-cal Science, Guangzhou University, Guangzhou 510006, P. R. China

^b School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, P. R. China

^c Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Anti-Drug Tethnology Center of Guangdong Province, Guangzhou 510230, P. R. China

*E-mail: dxhan@gzhu.edu.cn, ccqindd@gzhu.edu.cn

‡These authors contributed equally to this work.

Supporting Figures:

Fig. S1 SEM images of Fe_3O_4 nanospheres (a), $Fe_3O_4@TiO_2$ (b), $Fe_3O_4@TiO_2$ with a higher resolution (c) and $Fe_3O_4@TiO_2$ -Co-2.7 (d).

Fig. S2 X-ray diffraction patterns (a) and Raman spectra (b) of the as-prepared samples. (New supplemented data)

Fig. S3 Photocatalyst Fe₃O₄@TiO₂-Co-2.7 EPR spectra of DMPO - O_2^- (a) and DMPO - OH (B) in darkness and light for 5 min.

Fig. S4 TEM image (a) of the Fe_3O_4 @TiO₂-Co-2.7 after cycling test; XRD patterns (b) of Fe_3O_4 @TiO₂-Co-2.7 before and after cycle experiments of photocatalytic degradation of TC. (New supplemented data)

Fig. S5 (a) Photos of the as-collected water bodies (tap water and lake water); (b) Photocatalytic degradation of TC by $Fe_3O_4@TiO_2$ -Co-2.7 in different water quality. (New supplemented data)

Fig. S6 The m/z of degraded TC: (a) TC in 0 min, (b) degradation of TC in 30 min, (c) 60 min and (d) 120 min. (New supplemented data)

Fig. S7 Comparison of TOC removal efficiency at 120 min of reaction using Fe₃O₄, TiO₂, Fe₃O₄@TiO₂, and Fe₃O₄@TiO₂-Co-2.7. (New supplemented data)

Supporting Tables:

Table S1. The content of Co loaded on the Fe_3O_4 @TiO₂-Co-x% samples was determined by ICP-OES.

Samples	Fe ₃ O ₄ @TiO ₂ -Co-			
	1%	3%	5%	7%
Co	0.0	2.7	16	6.5
(wt%)	0.9	2.1	4.0	0.3

Table S2. The fitting values of the equivalent circuit elements for the various samples. (New supplemented data)

Samples	Fitting $R_s(\Omega)$	Fitting C_{dl} (×10 ⁻⁵ F)	Fitting $R_{ct} (k\Omega)$
Fe ₃ O ₄	28.7	4.76	4.00
Fe ₃ O ₄ @TiO ₂	23.4	5.83	3.12
Fe ₃ O ₄ @TiO ₂ -Co-2.7	30.1	7.87	0.99

Compounds	Formula	m/z	Proposed structure
ТС	$C_{22}H_{24}N_2O_8$	445	
TC1	$C_{22}H_{24}N_2O_7$	429	
TC2	$C_{21}H_{22}N_2O_7$	415	
TC3	C ₁₈ H ₁₉ NO ₇	362	
TC4	$C_{17}H_{18}O_{6}$	319	HO CH ₃ H
TC5	$C_{15}H_{16}O_5$	274	HO CH3
TC6	$C_4H_2O_6$	147	
TC7	$C_2H_2O_4$	91	но он

 Table S3. Identification of the possible TC degradation products by HPLC-MS under

 simulated solar light irradiation. (New supplemented data)

Samula	Light radiation	Content of Co ions in	Content of Fe ions in
Sample	time	reaction solution (mg L ⁻¹)	reaction solution (mg L ⁻¹)
E. O OTO	0	0.0021	0.00037
$Fe_{3}O_{4}(a) I_{1}O_{2}$ -	1 h	0.0023	0.00038
Co-2./	2 h	0.0026	0.00041

 Table S4. The content of Co and Fe ions in reaction solution after different light

 radiation time was determined by ICP-MS. (New supplemented data)

Note: We investigated the content of Co and Fe ions in the solution after different reaction time (0, 1 h, and 2 h) by ICP-MS (as listed in Table S4). The results demonstrate that trace Co and Fe ions are indeed leached from samples during the process of photocatalytic reaction. The concentration of Co and Fe ions in the solution increases with prolonged time of photocatalytic reaction. It is worth noting that the content of Co and Fe leached during the photocatalytic reaction is very low.