Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Capacitive properties of carbon nanofibers derived from blends of

cellulose acetate and polyacrylonitrile

Zhenzhao Chen^a, Guoqing Chen^a, Changshui Wang^a, Dai Chen^a, Qian Zhang^{b*}, Longjun Jiang^b, Chunmei Zhang^{c*}, Kunming Liu^d, Shuijian He^{a*}

^a Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.

^b College of Science, Nanjing Forestry University, Nanjing 210037, China.

^c Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.

^d Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China

* Corresponding authors

E-mail: <u>zhangqian5689@njfu.edu.cn</u> (Qian Zhang), cmzhang@usts.edu.cn (Chunmei Zhang), <u>shuijianhe@njfu.edu.cn</u> (Shuijian He)

Fig. S1 CA carbon fiber membrane assisted by zinc acetate and pure CA carbon fiber membrane.

Fig. S2 Optical images of $CNF-C_6P_1$ (a) before folding, (b) folded with an angle of 180° , (c) after unfolding.

Fig. S3 CV profiles for (a) CNF-C₂P₁, (b) CNF-C₄P₁, (c) CNF-C₆P₁ and (d) CNF-C₈P₁ electrode at various scanning rates.

Fig. S4 CV curves for CNF-C_xP₁ electrodes at different scanning rates.

Characterizations		CNF-C ₂ P ₁	CNF-C ₄ P ₁	CNF-C ₆ P ₁	CNF-C ₈ P ₁	
	C (%) O (%) N (%)		89.94	91.90	85.97	88.64
			4.82	5.11	10.77	7.75
			4.24	2.99	3.26	3.61
XPS	C=O	B.E. (eV)	531.00	531.27	531.30	531.10
		Content (%)	3.78	3.70	6.93	5.98
	C-OH or	B.E. (eV)	532.62	532.51	532.57	532.68
	O-C=O	Content (%)	1.04	1.41	3.84	1.77
	N-6	B.E. (eV)	398.10	398.10	397.89	398.10
		Content (%)	0.50	0.29	0.26	0.41
	N-5	B.E. (eV)	399.60	399.70	399.60	399.60
		Content (%)	1.53	1.18	1.40	1.31
	N-Q	B.E. (eV)	401.06	401.00	401.10	401.10
		Content (%)	1.46	1.11	1.08	0.98

Table S1 The C. O and N contents of CNF-C_vP₁ samples.

Types of	Composition	Specific Conscitance	Cycle stability	Remarks	Ref.
Cell	Composition	Specific Capacitance	Cycle stability		
Two		116 F g ⁻¹ (0.2 A g ⁻¹)	85%	Self-supporting	1
electrodes	Commercial cotton cloth	6 M KOH	(15,000 cycles)		
Two	D. 4	90 F g ⁻¹ (0.1 A g ⁻¹)	96.9%	Non-flexibility	2
electrodes	Potassium citrate/vermicelli	6 M KOH	(10,000 cycles)		
Two	D . 1/2 111 1 .	73 F g ⁻¹ (0.1 A g ⁻¹)	97.7%	Non-flexibility	3
electrodes	Resorcinol/formaldehyde resin	1 M KOH	(10,000 cycles)		
Two		166 F g ⁻¹ (0.5 A g ⁻¹)	87.6%	Self-supporting	4
electrodes	Polyimide/H ₂ O ₂	6 M KOH	(20,000 cycles)		
Two		86 F g ⁻¹ (1 A g ⁻¹)	93.5%	Non-flexibility	5
electrodes	Osmanthus	3 M KOH	(10,000 cycles)		
Two		129 F g ⁻¹ (0.1 A g ⁻¹)	99.9%	Non-flexibility	6
electrodes	Microcrystalline cellulose	6 M KOH	(3000 cycles)		
Two		94 F g ⁻¹ (0.5 A g ⁻¹)	93.5%		7
electrodes	GO/Lobiolly pine	1 M H ₂ SO ₄	(10,000 cycles)	Flexibility	
Two		143 F g ⁻¹ (0.1 A g ⁻¹)	92%	Self-supporting; deacetylation	8
electrodes	CA/ZnCl ₂	6 M KOH	(5000 cycles)		
Two	Lionoollulasia kissussa	130 F g ⁻¹ (0.1 A g ⁻¹)	88%	Non-flexibility	9
electrodes	Lignocentulosic biomasses	6 M KOH	(2500 cycles)		
Two	Chinese fir bark	105 F g ⁻¹ (0.5 A g ⁻¹)	91%	Non-flexibility	10

Table S2 Comparison between this work and others present in literature for supercapacitor characteristics.

electrodes		6 M KOH	(10,000 cycles)		
Two	Demonstration	87 F g ⁻¹ (1 A g ⁻¹)	/	Non-flexibility	11
electrodes	Banana peeis	$1 \text{ M H}_2 \text{SO}_4$	7		
Two		97 F g ⁻¹ (1 A g ⁻¹)	87.8%	Nog flowikility	12
electrodes	PVP/PIN	$1 \text{ M H}_2 \text{SO}_4$	(3000 cycles)	Non-mexionity	
Two		38 F g ⁻¹ (1 A g ⁻¹)	80%	NT (1 '1 '1''	13
electrodes	Asciepias syriaca	1 M KOH	(200,000 cycles)	Non-nexionity	
Two		103 F g ⁻¹ (0.25 A g ⁻¹)	94.8%	11 1117	14
electrodes	Ginger cellulose	$1 \text{ M H}_2 \text{SO}_4$	(1000 cycles)	Flexibility	
Three		101 F g ⁻¹ (0.5 A g ⁻¹)	74%	Flexibility	15
electrodes	Cardon black/CA	1 M KOH	(100 cycles)		
Two		52 F g ⁻¹ (0.25 A g ⁻¹)	97.2%	Non-flexibility	16
electrodes	CA/KOH	6 M KOH	(5000 cycles)		
Two		199 F g ⁻¹ (1 A g ⁻¹)	~100%	N	17
electrodes	CA/K_2CO_3	6 M KOH	(10,000 cycles)	non-nexionity;	
Three		229 F g ⁻¹ (0.2 A g ⁻¹)	~97.3%	Non-flexibility;	18
electrodes	CA/ NaOH	6 M KOH	(40,000 cycles)	deacetylation	
Two		142 F g ⁻¹ (1 A g ⁻¹)	~77%	Non-flexibility;	10
electrodes	CA/bead cellulose	4 M KOH	(10,000 cycles)	deacetylation	19
Three	CA/PAN/(CH ₃ COO) ₂ Zn	132 F g ⁻¹ (0.5 A g ⁻¹)	98.2%		
electrodes		6 M KOH	(10,000 cycles)	Flexibility	This
Two		111 F g ⁻¹ (0.1 A g ⁻¹)	85%		work

References

1. W. Zhao, B. Yan, D. Chen, J. Chen, Q. Zhang, L. Jiang, T. Lan, C. Zhang, W. Yang and S. He, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2023, 668, 131425.

2. J. Zheng, B. Yan, L. Feng, Q. Zhang, C. Zhang, W. Yang, J. Han, S. Jiang and S. He, *Diamond and Related Materials*, 2022, 128, 109247.

3. L. Chen, J. Deng, Y. Yuan, S. Hong, B. Yan, S. He and H. Lian, *Diamond and Related Materials*, 2022, 121, 108781.

4. B. Yan, J. Zheng, L. Feng, Q. Zhang, J. Han, H. Hou, C. Zhang, Y. Ding, S. Jiang and S. He, *Diamond and Related Materials*, 2022, 130, 109465.

5. J. Li, Y. Zou, C. Xiang, F. Xu, L. Sun, B. Li and J. Zhang, *Journal of Energy Storage*, 2021, 42, 103017.

6. L. E, J. Sun, W. Gan, Z. Wu, Z. Xu, L. Xu, C. Ma, W. Li and S. Liu, *Journal of Energy Storage*, 2021, 38, 102414.

7. Q. Wu, C. Jiang, S. Zhang, S. Yu and L. Huang, *Journal of Materials Chemistry A*, 2022, 10, 16853-16865.

8. Q. Fan, C. Ma, L. Wu, C. Wei, H. Wang, Y. Song and J. Shi, *RSC Advances*, 2019, 9, 6419-6428.

9. H. Wei, H. Wang, A. Li, H. Li, D. Cui, M. Dong, J. Lin, J. Fan, J. Zhang, H. Hou, Y. Shi, D. Zhou and Z. Guo, *Journal of Alloys and Compounds*, 2020, 820, 153111.

10. L. Luo, Y. Zhou, W. Yan, X. Wu, S. Wang and W. Zhao, *Electrochimica Acta*, 2020, 360, 137010.

11. A. Raji, J. I. E. Thomas Nesakumar, S. Mani, S. Perumal, V. Rajangam, S. Thirunavukkarasu and Y. R. Lee, *Journal of Industrial and Engineering Chemistry*, 2021, 98, 308-317.

12. P. Zhou, F. Xiao, R. Weng, Q. Huang, L. Wang, Q. He, W. Tang, P. Yang, R. Su, P. He, B. Jia and L. Bian, *Journal of Materials Chemistry A*, 2022, 10, 10514-10524.

13. G. Byatarayappa, V. Guna, R. M. G, K. Venkatesh, Y. Zhao, N. N, N. Reddy and K. Nagaraju, *Sustainable Energy & Fuels*, 2022, 6, 4034-4047.

14. D.-C. Wang, H.-Y. Yu, Z. Ouyang, D. Qi, Y. Zhou, A. Ju, Z. Li and Y. Cao, *Nanoscale*, 2022, 14, 5163-5173.

15. G. G. Daniele, D. C. de Souza, P. R. de Oliveira, L. O. Orzari, R. V. Blasques, R. L. Germscheidt, E. C. da Silva, L. A. Pocrifka, J. A. Bonacin and B. C. Janegitz, *C*, 2022, 8, 32.

16. R. Bi, S.-K. Pang, K.-C. Yung and L.-K. Yin, *Journal of Electroanalytical Chemistry*, 2022, 925, 116915.

17. L. Li, C. Jia, X. Zhu and S. Zhang, *Journal of Cleaner Production*, 2020, 256, 120326.

18. Y. Wang, J. Cui, Q. Qu, W. Ma, F. Li, W. Du, K. Liu, Q. Zhang, S. He and C. Huang, *Microporous and Mesoporous Materials*, 2022, 329, 111545.

19. J. Fischer, K. Thümmler, S. Fischer, I. G. Gonzalez Martinez, S. Oswald and D. Mikhailova, *Energy & Fuels*, 2021, 35, 12653-12665.