Supplementary Materials

Engineering hierarchical manganese molybdenum sulfide

nanosheets integrated cathode for high-energy density hybrid

supercapacitors

Chao Li,^{a,b} Qiong Liu,^a Lu Liu,^a Ge Wu,^a Yulong Zhang,^a Sihan Liu,^a Ruhua Zha,^{a,b} Yu Zhang,^{*a,b} Qing Li^{*a,b}

^a College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China

^b Xinyang Key Laboratory of Low-Carbon Energy Materials, Xinyang Normal University,

Xinyang 464000, China

*Corresponding authors.

E-mail addresses: yuzhang@xynu.edu.cn; lqlq0312@163.com.

Fig.S1. Low- and high-magnification SEM images for $MnMoO_4 \cdot H_2O$ NSs by performing the hydrothermal reactions for 2-8h; (a) and (b) for $MnMoO_4 \cdot H_2O$ NSs-2; (c) and (d) for $MnMoO_4 \cdot H_2O$ NSs-4; (e) and (f) for $MnMoO_4 \cdot H_2O$ NSs-6; (g) and (h) for $MnMoO_4 \cdot H_2O$ NSs-8.

Fig.S2. EDAX spectrum for Mn-Mo-S NSs.

Fig.S3. EDAX spectrum for $MnMoO_4$ ·H₂O NSs-8.

Fig.S4. XRD pattern for $MnMoO_4$ ·H₂O NSs-8.

Fig.S5. CV curves for $MnMoO_4$ ·H₂O NSs-8.

Fig.S6. GCD curves for $MnMoO_4$ ·H₂O NSs-8.

Fig.S7. CV curves comparison of Mn-Mo-S NSs and MnMoO₄·H₂O NSs-8 at 10 mV s⁻¹.

Fig.S8. GCD curves comparison of Mn-Mo-S NSs and MnMoO₄·H₂O NSs-8 at 2 mA cm⁻².

Fig.S9. Bode phase angle plots of Mn-Mo-S NSs-Before and Mn-Mo-S NSs-After.

Fig.S10. The initial and final 10 GCD cycles for Mn-Mo-S NSs integrated cathode in the cyclic stability test at 50 mA cm⁻² for 10000 GCD cycles.

Fig.S11. EIS spectra comparison of Mn-Mo-S NSs-Before and Mn-Mo-S NSs-After.

Fig.S12. SEM images for Mn-Mo-S NSs-After.

Fig.S13. (a) N_2 adsorption-desorption isotherm and (b) pore size distribution for Mn-Mo-S NSs-After.

Fig.S14. CV curves of Mn-Mo-S NSs cathode and Fe₂O₃@rGO anode at 10 mV s⁻¹.

Fig.S15. The initial and final 10 GCD cycles for Mn-Mo-S NSs//Fe₂O₃@rGO HSC in the cyclic stability test at 50 mA cm⁻² for 10000 GCD cycles.

Table S1. The elemental composition of Mn-Mo-S NSs integrated cathode before and
after cycling tests confirmed by the ICP-OES measurements.

Electrode materials	Mn (at.%)	Mo (at.%)	S (at.%)	O (at.%)
Mn-Mo-S NSs-Before	12.21	36.72	48.73	2.34
Mn-Mo-S NSs-After	12.13	36.67	47.33	3.87

Electrode	Scan rate	Anodic peak	Anodic peak	Cathodic peak	Cathodic peak	CV integrated
materials	(mVs ⁻¹)	position (V)	current (A)	position (V)	current (A)	area
	5	0.449	0.0289	0.315	-0.0258	0.0097
	10	0.471	0.0408	0.301	-0.0368	0.0151
MrMaO .H O	15	0.484	0.0498	0.291	-0.0447	0.0186
MnMoO ₄ ·H ₂ O	20	0.497	0.0573	0.282	-0.0511	0.0215
NS-8	30	0.509	0.0639	0.275	-0.0565	0.0260
	40	0.518	0.0698	0.269	-0.0613	0.0297
	50	0.536	0.0801	0.259	-0.0696	0.0329
	5	0.446	0.0342	0.309	-0.0291	0.0105
	10	0.467	0.0513	0.298	-0.0432	0.0173
	15	0.485	0.0639	0.288	-0.0532	0.0225
Mn-Mo-S NSs	20	0.499	0.0745	0.281	-0.0614	0.0291
	30	0.52	0.0918	0.268	-0.0745	0.0348
	40	0.536	0.1063	0.258	-0.0854	0.0412
	50	0.555	0.1192	0.248	-0.0947	0.0466

Table S2. The corresponding electrochemical performance for $MnMoO_4$ ·H₂O NS-8 and Mn-Mo-S NSs integrated cathode obtained from the CV data in Fig.S5 and Fig.4a.

Table S3. The corresponding electrochemical performance for $MnMoO_4$ ·H₂O NSs-8 and Mn-Mo-S NSs integrated cathode obtained from the GCD data in Fig.S6 and Fig.4b.

Electrode materials	Current density (mA cm ⁻²)	Charge time (s)	Discharge time (s)	Charge capacity (mAh cm ⁻² /mAh g ⁻¹)	Discharge capacity (mAh cm ⁻² /mAh g ⁻¹)	Rate capability
	2	232.4	231.2	0.14/264.2	0.139/262.3	
	3	162.6	159.8	0.129/243.4	0.128/241.5	
MaMaO II O	5	118.7	113.2	0.115/217	0.114/215.1	
$\frac{1}{10004}$	8	52.1	51.2	0.107/201.9	0.106/200	53.2%
NSs-8	10	34.6	33.3	0.103/194.4	0.102/192.5	
	15	15.7	14.5	0.087/166.1	0.086/164.2	
	20	9.2	8	0.075/141.5	0.074/139.6	
	2	556.8	553.4	0.375/394.7	0.373/392.6	
	3	319.7	317.4	0.345/363.2	0.344/362.1	
	5	166.4	165	0.29/305.3	0.289/304.2	
Mn-Mo-S NSs	8	89.1	87.5	0.258/271.6	0.257/270.5	60.6%
	10	64.2	63.5	0.243/255.8	0.242/254.7	
	15	36.3	35	0.236/248.5	0.235/247.4	
	20	23.4	22.5	0.227/239	0.226/237.9	

Electrode	R _s	CPE ₁ -T	R _{ct}	Z _w -R	Z _w -T	CPE ₂ -T
materials	(Ω)	(mF)	(Ω)	(Ω)	(Ω)	(mF)
MnMoO ₄ ·H ₂ O NSs-8	1.138	0.0053	1.635	6.265	11.62	0.355
Mn-Mo-S NSs-Before	0.763	0.0649	0.838	0.305	2.73	1.598
Mn-Mo-S NSs-After	0.791	0.0376	1.086	0.772	8.66	1.339

Table S4. EIS spectra fitting results for $MnMoO_4 \cdot H_2O$ NSs-8, Mn-Mo-S NSs integrated cathode before and after cycling stability measurements.

Electrode materials	Areal capacitance/ capacity (F cm ⁻² /mAh cm ⁻²)	Specific capacitance/ capacity (F g ⁻¹ /mAh g ⁻¹)	Current load (A g ⁻¹ /mA cm ⁻²)	Electrolyte	Stability (Cycles)	Ref.
MnMoS ₄ @CNF	_	1727.9 F g ⁻¹	1 A g ⁻¹	ЗМ КОН	84% 6000	1
FeCo ₂ S ₄ @Ni@Gr	-	$390 \text{ mAh } \text{g}^{-1}$	1 A g ⁻¹	ЗМ КОН	58.1% 10000	2
NiCo ₂ S ₄ /rGO	-	$1072 \ {\rm F} \ {\rm g}^{-1}$	$1 \mathrm{A} \mathrm{g}^{-1}$	6M KOH	-	3
NiCoS@PPy	-	2316.6 F g^{-1}	$1 { m A g^{-1}}$	2М КОН	-	4
rGO/PANI@NiMoS4	-	194 mAh g ⁻¹	$0.75 \ { m A g^{-1}}$	1M KOH	-	5
NiCo ₂ S ₄ @HCs	-	3178.2 F g ⁻¹	1 A g ⁻¹	2М КОН	95.9% 5000	6
ZnCo ₂ S ₄ @ppy	-	1486 F g ⁻¹	1 A g ⁻¹	ЗМ КОН	72.9% 5000	7
MnCo ₂ S ₄		129.7 mAh g ⁻¹	1 A g ⁻¹	ЗМ КОН	87.81% 4000	8
Ravine-like MnCo ₂ S ₄ nanosheets	-	231 mAh g ⁻¹	1 A g ⁻¹	ЗМ КОН	94% 5000	9
NiMn-S	-	2510.15 F g^{-1}	1 A g ⁻¹	6M KOH	84.5% 5000	10
CoNi ₂ S ₄ /CNFs	-	1870 mAh g ⁻¹	$4 \mathrm{A} \mathrm{g}^{-1}$	6M KOH	85.1% 5000	11
ZnGa ₂ S ₄ hollow spheres	-	$358.4 \text{ mAh } \text{g}^{-1}$	2 A g^{-1}	6M KOH	98.4% 5000	12
Mn-Mo-S NSs	$0.373 \text{ mAh cm}^{-2}$	392.6 mAh g ⁻¹	2 mA cm ⁻²	2М КОН	96.2% 10000	This work

 Table S5. Electrochemical properties comparison of Mn-Mo-S NSs with recently reported TMSs-type electrode materials in literatures.

Reported Deviced	Electrolyte	Device Window (V)	Energy density (Wh kg ⁻¹)	Power Density (W kg ⁻¹)	Stability (Cycles)	Ref.
FeCo ₂ S ₄ @Ni@Gr//AC	ЗМ КОН	0-1.6	65.8	849	89.2% 6000	2
NiCo ₂ S ₄ /rGO//AC	6M KOH	0-1.7	41.52	1067	82% 3000	3
NiCoS@PPy//AC	2М КОН	0-1.6	34.4	799	84% 8500	4
NiCo ₂ S ₄ @HCs//AC	2M KOH	0-1.6	69.6	847	90.2% 10000	6
ZnCo ₂ S ₄ @ppy//AC	ЗМ КОН	0-1.6	33.78	800.05	90% 5000	7
NiCo ₂ S ₄ @NiMoS ₄ //Fe ₂ O ₃ /NG	KOH/PVA	0-1.6	72.3	460	90.5% 10000	13
MnCo ₂ S ₄ NSs//Fe ₂ O ₃ @rGO	KOH/PVA	0-1.6	61.4	244	90.4 % 10000	14
MnCo ₂ S ₄ /Co ₉ S ₈ //AC	6M KOH	0-1.6	45.8	800	94.8% 5000	15
CoMoS4@Ni-Co-S//AC	ЗМ КОН	0-1.6	49.1	800	90.3% 10000	16
MoS ₂ /NiCo ₂ S ₄ @C HMSs//AC	6М КОН	0-1.6	53.01	4200	90.1% 10000	17
MnCo ₂ S ₄ /Co ₉ S ₈ //AC	6М КОН	0-1.6	45.8	800	94.8% 5000	18
NiCo ₂ S ₄ /BPC//BPC	ЗМ КОН	0-1.6	38.5	738.1	89% 4000	19
NiCo ₂ S ₄ //ARHC	2M KOH	0-1.6	41.1	400	62% 10000	20
CoMoS ₄ /RGO//AC	1M KOH	0-1.5	59.4	1125	99.3% 6000	21
Mn-NiS NSs//ONAC	KOH/PVA	0-1.65	44.2	825	90% 5000	22
NiCo ₂ S ₄ -Ni ₉ S ₈ -C DYMs//rGO gel	6M KOH	0-1.6	51.0	1399.4	84.5% 5000	23
C/NiCo ₂ S ₄ //AC	6M KOH	0-1.6	34.1	160	78.9% 4000	24
NiCo ₂ S ₄ /CNT//Fe ₂ O ₃ /CNT	ЗМ КОН	0-1.7	41.6	800	82% 5000	25
Mn-Mo-S NSs//Fe ₂ O ₃ @rGO	KOH/PVA	0-1.6	72.9	516.8	94.6% 10000	This work

Table S6. Electrochemical properties comparison with recently reported literatures.

References

- 1 S. Anand, A. Choudhury, *Mater. Chem. Phys.*, 2023, 299, 127517.
- X. Zheng, J. Jiang, T. Bi, F. Jin, M. Li, ACS Appl. Energy Mater., 2021, 4, 3288-3296.
- A. I. A. Salam, S. Y. Attia, F. I. E. I. Hosiny, M. A. Sadek, S. G. Mohamed, M. M. Rashad, *Mater. Chem. Phys.*, 2022, 277, 125554.
- 4 X. Zhao, Q. Ma, K. Tao, L. Han, ACS Appl. Energy Mater., 2021, 4, 4199-4207.
- 5 R. Xiong, X. Zhang, X. Xu, Z. Zhang, X. Tian, C. Wang, *Diam. Relat. Mater.*, 2022, **127**, 109183.
- J. Zhao, Y. Wang, Y. Qian, H. Jin, X. Tang, Z. Huang, J. Lou, Q. Zhang, Y. Lei,
 S. Wang, *Adv. Funct. Mater.*, 2023, 33, 2210238.
- 7 Y. Wang, C. Xiang, Y. Zou, F. Xu, L. Sun, J. Zhang, J. Energy Storage, 2021, 41, 102838.
- K. V. G. Raghavendra, C. V. V. M. Gopi, R. Vinodh, S. S. Rao, I. M. Obaidat, H. J. Kim, *J. Energy Storage*, 2020, 27, 101159.
- 9 L. Abbasi, M. Arvand, S. E. Moosavifard, Carbon, 2020, 161, 299-308.
- X. Wang, C. Hao, J. Zhang, C. Ni, X. Wang, Y. Shen, J. Power Sources, 2022, 539, 231594.
- 11 J. Zhu, C. Han, X. Song, Mater. Chem. Phys., 2022, 283, 126038.
- 12 A. M. Zardkhoshoui, M. M. Ashtiani, M. Sarparast, S. S. H. Davarani, J. Power Sources, 2020, 450, 227691.
- 13 K. R. Shrestha, S. Kandula, N. H. Kim, J. H. Lee, Chem. Eng. J., 2021, 405, 127046.
- 14 C. Li, T. Zhao, X. Feng, S. Liu, L. Li, R. Zha, Y. Zhang, Z. Zhang, J. Alloys Compd., 2021, 859, 157815.
- 15 H. Jia, J. Wang, W. Fu, J. Hu, Y. Liu, Chem. Eng. J., 2020, 391, 123541.
- 16 F. Ma, X. Dai, J. Jin, N. Tie, Y. Dai, *Electrochim. Acta*, 2020, **331**, 135459.
- 17 Q. Li, W. Lu, Z. Li, J. Ning, Y. Zhong, Y. Hu, Chem. Eng. J., 2020, 380, 122544.
- 18 H. Jia, J. Wang, W. Fu, J. Hu, Y. Liu, Chem. Eng. J., 2020, 391, 123541.

- 19 J. Feng, X. Zhang, Q. Lu, E. Guo, M. Wei, *Energy Fuels*, 2022, 36, 5424-5432.
- 20 Y. Gao, B. Wu, J. Hei, D. Gao, X. Xu, Z. Wei, H. Wu, *Electrochim. Acta*, 2020, 347, 136314.
- 21 Z. Zhang, X. Zhang, X. Xu, R. Xiong, X. Tian, C. Wang, Colloid. Surface. A, 2022, 652, 129762.
- R. K. Devi, M. Ganesan, T. W. Chen, S. M. Chen, M. Akilarasan, S. P. Rwei, J. Yu, T. Elayappan, A. Shaju, J. Alloy Compd., 2023, 944, 169261.
- 23 Y. Yan, A. Li, C. Lu, T. Zhai, S. Lu, W. Li, W. Zhou, Chem. Eng. J., 2020, 396, 125316.
- 24 W. Lu, M. Yang, X. Jiang, Y. Yu, X. Liu, Y. Xing, Chem. Eng. J., 2020, 382, 122943.
- 25 X. Yang, X. He, Q. Li, J. Sun, Z. Lei, Z. H. Liu, *Energy Fuels*, 2021, 35, 3449-3458.