Supplementary Information

For

Design of novel Ag-MOF@GO composite with high specific surface area and structural stability for efficient removal of malachite green

Xingguo Deng^a, Jingchao Li^{a,*}, Bo Zhao ^{b,c}, Zhihua Li^{b,c}

^a Hunan Food and Drug Vocational College, Changsha, 410000, P.R. China.

- ^b Key Laboratory of Nonferrous Metal Materials Science and Engineering of Ministry of Education, Central South University, Changsha, 410083, P.R. China.
- ^c School of Materials Science and Engineering, Central South University, Changsha,
 410083, P.R. China.

* Corresponding author: Jingchao Li, E-mail: ligfz@csu.edu.cn.

Fig. S1. Langmuir, Freundlich and Temkin isotherm models for the adsorption of MG dyes at

three different temperatures using Ag-MOF@GO.

Fig. S2. XRD spectra of Ag-MOF@GO after three cycles.