Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Si-modified Mn-Ce oxide catalyst for selective catalytic reduction of

NO*^x* **with NH³ at low temperature**

Shuai Wang^a, Na Zhu ^{a*}, Pengpeng Xu^a, Shuai Li^a, Di Chen b

a School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362251, PR China b Smart Devices and High-end Equipment Lab, Foshan (Southern China) Institute for New Materials, Foshan, 528247, PR China

*Corresponding author.

Tel: +86 595 82660815

E-mail: nzhu@fzu.edu.cn

1.1 Catalytic activity test

The NH₃-SCR performance of the catalysts was evaluated in a fixed-bed quartz reactor. The catalyst samples (40-60 mesh) were put into a quartz tube with an inner diameter of 6 mm, which was placed in a tube furnace, and the temperature was controlled at 50 to 300 °C. The simulated flue gas was composed of 500 ppm NO, 500 ppm NH₃, 50 ppm SO₂ (when used), 5% O_2 and N₂ balance. The total flow rate was 500 mL·min⁻¹, and the corresponding gas hourly space velocity (GHSV) was 5×10^4 h⁻¹. The effluent gases, including NH₃, NO, N₂O and NO₂, were analyzed by a Nicolet IS50 FTIR gas analyzer. Activity data were collected when the catalytic reaction actually reached steady-state conditions at each temperature.

1.2 Catalyst Characterization

The specific surface area and pore characteristics of the samples were measured by N_2 adsorption/desorption analysis on a physisorption analyzer (MicrotracBEL). The samples need to be degassed at 300 °C for 1 h before N_2 physisorption at 77 K.

X-ray diffraction (XRD) patterns of the samples were recorded on a diffractometer (Bruker D8 Advance, Germany) with CuKα radiation (= 0.154056 nm) in a 2θ of 10°–80° at 0.02 °s⁻¹.

The temperature programmed desorption of $NH₃$ (NH₃-TPD) was carried out on an FTIR spectrometer (Nicolet IS50). The catalyst sample (50 mg) was first pretreated in air at 300 °C for 0.5 h, and then cooled down to 50 °C under N₂ conditions. Afterwards, the catalyst sample was exposed to 500 ppm $NH₃/N₂$ until saturation, followed by N₂ purging for 0.5 h. Finally, the catalyst sample was heated from 50 °C to 650 °C in a N₂ flow (100 mL·min⁻ ¹) at a constant heating rate (10 °C·min⁻¹). The concentration of NH₃ was detected using Nicolet IS50 FTIR spectroscopy.

The $H₂$ temperature programmed reduction ($H₂-TPR$) experiments were performed on an Autochem 2920 (Micromeritics) analyzer. The samples (50 mg) were pretreated at 300 $°C$ in a quartz reactor in a flow of Ar (50 mL \cdot min⁻¹) for 1 h and cooled down to room temperature. Then, from room temperature to 800 °C, H_2 -TPR was performed in a 10 vol.% H₂/Ar gas flow of 50 mL·min⁻¹ at a heating rate of 10 °C·min⁻¹.

The surface element compositions and chemical states of each catalyst sample were evaluated by an X-ray photoelectron spectroscopy (XPS) analyzer (Axis Ultra, Kratos Analytical Inc.) using Al Kα X-ray radiation (1486.6 eV). All of the binding energies were calibrated using the C 1s peak (binding energy = 284.8 eV) as a standard.

The adsorption behavior of the reactants and their surface reactions were studied by *in situ* diffuse reflectance infrared Fourier transform spectroscopy (*in situ* DRIFTS), which was carried out on a Brooker VERTEX 80/80V Fourier transform infrared spectrometer (Brück, Germany) equipped with liquid nitrogen-cooled MCT detection. The powder sample was pretreated in 20 % O_2/N_2 at 450 °C for 0.5 h prior to adsorption experiments. The following conditions were controlled as follows: 500 ppm NH $_3$, or 500 ppm NO + 5% O_2 , N₂ balance, and the total flow rate was kept at 300 mL·min⁻¹. For the experiments on NH₃ or NO_x adsorption, the sample was saturated with NH₃/N₂ or NO_x/N₂ for 40 min, and then purged with N_2 for 30 min. All spectra were recorded by accumulating 100 scans with a resolution of 4 cm $^{-1}$.

1.3 Kinetics experiment

In order to obtain a further understanding of the effect of Si doping and sulfation aftertreatment on the NH₃-SCR reaction, the kinetics experiments were studied on Mn_4Ce_6 , $Mn_4Ce_5Si_1$ and $Mn_4Ce_5Si_1-1S\%$ catalysts. The samples with particles of 40-60 mesh and a total gas flow rate of 500 mL \cdot min $^{-1}$ were selected to rule out internal and external transfer diffusion. The NO*^x* conversion was controlled below 20%. The NO*^x* reduction rates (mol·g·s⁻¹) and activation energy (E_a) were calculated based on the following equations:

$$
-r = \frac{F}{w} \ln(1-x)
$$

$$
k = \frac{r}{[NO]_0} = Ae^{-Ea/RT}
$$

where F is the NO_x flow rate, $[NO_x]_0$ is the NO_x concentration at the inlet, W is the mass of catalyst, E_a is the apparent activation energy, T is the Kelvin temperature, R is the gas constant (8.314 J/(mol·K)), and A represents the pre-factor.

Fig. S1 NO_x conversion and N₂ selectivity versus temperature over different catalysts: different Ce/Si molar ratios (a), different Mn/Ce molar ratios (b), and N_2 selectivity (c). A series of Si-modified Mn-Ce oxide catalysts were prepared to study the effect of the Si element on the NH₃-SCR activity of Mn-Ce oxide catalysts, as shown in Fig. S1. When the content of Mn was constant, the increase of Si/Ce ratio resulted in a decrease in NO*^x* conversion at low temperature. However, the catalyst activity (>200 °C) was in the order following: $Mn_4Ce_1Si_5 > Mn_4Ce_2Si_4 > Mn_4Ce_3Si_3 > Mn_4Ce_4Si_2 > Mn_4Ce_5Si_1$. The $Mn_3Ce_bSi_c$ with different Mn/Ce ratios was also investigated, and the $Mn_4Ce_5Si_1$ catalyst showed the widest temperature window and highest NO*^x* conversion (> 90%) at 100-260 °C.

Fig. S2 (a) $NH₃$ conversion and (b) NO conversion in separate $NH₃$ and NO oxidation reactions over Mn_4Ce_6 , $Mn_4Ce_5Si_1$ and $Mn_4Ce_5Si_1$ -1%S.

As shown in Fig. S2, the Mn_4Ce_6 catalyst showed the best NH_3 oxidation activity and NO oxidation activity. The introduction of Si resulted in the decrease of activation of NH₃ and NO, which is the reason of the enhanced N_2 selectivity and decreased catalytic activity at low temperature.

Fig. S3 NO_x conversion of catalysts with different H_2SO_4 loadings at 260 and 110 °C. $Mn_4Ce_5Si_1$ was sulfation after-treated with varying concentrations of sulfuric acid solution, and the NO*^x* conversions at 110 °C and 260 °C of catalysts are shown in Fig. S3. With the increase in sulfuric acid concentration, the NO_x conversion at 110 °C decreased and the NO_x conversion at 260 °C increased over Mn₄Ce₅Si₁-x%S catalysts. When the loading amount of sulfuric acid was 1%, the $Mn_4Ce_5Si_1-1%S$ catalyst showed a high NO_x conversion above 90% in the range of 110-260 °C.

Fig. S4 Effect of H₂O on the performance of catalyst.

As shown in Fig. S4, when 5% H2O was added to the reaction gas, the NO*^x* conversion of all the catalysts decreased below 170°C due to the competitive adsorption of H_2O , while that increased above 170°C, which may be attributed to the inhibition of the unselective oxidation of NH₃ at high temperature. The N₂ selectivity of all the catalysts was enhanced significantly at the present of H_2O (Fig. S4b). In comparison, the H_2O tolerance of Mn-Ce oxide catalysts wasimproved after Si modification and sulfation aftertreatment.

Fig. S5 NO_x reduction rates as a function of reaction temperature over Mn_4Ce_6 ,

 $Mn_4Ce_5Si_1$ and $Mn_4Ce_5Si_1-1%S$ catalysts.

To further understand the effect of Si and sulfation after-treatment on the reaction kinetics of NO_x reduction over Mn-Ce oxide catalysts, Arrhenius plots of the NH₃-SCR reaction are shown in Fig. S4. It can be seen that Mn_4Ce_6 , $Mn_4Ce_5Si_1$ and $Mn_4Ce_5Si_1$ -1%S have similar Ea (~37 kJ/mol), indicating of identical catalytic centers and rate-limiting steps.

Fig. S6 SEM images of (a and b) Mn_4Ce_6 , (c and d) $Mn_4Ce_5Si_1$, and (e and f) $Mn_4Ce_5Si_1$ -

1%S catalysts.

Fig. S7 H₂ consumption of Mn_4Ce_6 , $Mn_4Ce_5Si_1$, and $Mn_4Ce_5Si_1-1%S$ catalysts.

Fig. S8 FT-IR spectra of Mn_4Ce_6 , $Mn_4Ce_5Si_1$, and $Mn_4Ce_5Si_1$ -1%S catalysts.

A distinct band attributed to the Si-OH bond (ca. 910 cm⁻¹) was detected on $Mn_4Ce_5Si_1$ and $Mn_4Ce_5Si_1-1%S$, suggesting the abundant surface hydroxyl groups formed on the catalyst surface after the introduction of Si and sulfation after-treatment.¹

Fig. S9 NO-TPD profiles of Mn₄Ce₆, Mn₄Ce₅Si₁ and Mn₄Ce₅Si₁-1%S.

The NO-TPD profiles (Fig. S9) showed two distinct desorption peaks at 136-149 °C and 375-389 °C, which were attributed to physical-absorbed NO*^x* or the decomposition of monodentate nitrate species and the decomposition of bidentate nitrates or bridged nitrate species, respectively.¹

References

1. W. Tan, A. Liu, S. Xie, Y. Yan, T. Shaw, Y. Pu, K. Guo, L. Li, S. Yu, F. Gao, F. Liu and L. Dong, *Environ. Sci. Technol.*, 2021, **55**, 4017-4026.