Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

New Journal of Chemistry

Syntheses and ligand exchange experiments of *N*,*N*-dialkylcarbamate bridged $\{Al_3(\mu_3-O)\}^{7+}$ complexes

Erik Schumann, Uwe Böhme, Erica Brendler and Florian Mertens

Electronic Supplementary Information

DOI: https://doi.org/00.0000/000000000

Figure ESI.1: Illustration of the extraction procedure with diethyl ether (blue coloured liquid) with a SCHLENK-type extractor.

distance	value, Å					
Al1-05	1.8110(7)					
Al1-03	1.8885(19)	angle	value, °	CI11		
Al1-01	1.906(2)	05-Al1-03	94.14(10)	G22		
Al1-02#1	1.9138(19)	05–Al1–O1	93.74(10)	CI12		
Al1-04#2	1.9146(19)	O5-Al1-O2#1	96.92(8)	CI10		
Al1–N1	2.107(2)	O5-Al1-O4#2	96.10(8)			
O1–C1	1.275(3)	O3-Al1-N1	89.43(10)			
O2–C1	1.275(3)	O1–Al1–N1	82.68(10)			
O3–C2	1.278(3)	O2#1-Al1-N1	80.82(9)			CI6A CIER
O4–C2	1.279(3)	O4#2-Al1-N1	86.21(9)			CI4B
N2-C1	1.348(3)	Al1#1–O5–Al1#2	119.995(3)			C20
N2-C8	1.460(4)	02C101	123.9(2)			CI5B CI4A CI
N2-C12	1.464(4)	O3-C2-O4	123.8(2)			CI3B
N3-C2	1.348(3)				CI7	C19
N3-C13	1.459(4)	Symmetry transfor	Symmetry transformations used to generate equivalent atoms:		~	C18
N3-C17	1.464(4)	to generate equival			C21	CISA
N1–C3A	1.471(7)	#1 -v+1.x-v.z			CI9	
N1–C3B	1.497(18)	#2 -x+y+1,-x+1.z		0 n		
N1–C7B	1.350(11)	, , , ,				
N1–C7A	1.463(4)					

Crystal structures of compounds (1a) and (2a)

Figure ESI.2: Left: selected distances; middle: selected angles; right: chloroform molecules in the asymmetric unit of the crystal structure of compound (2a); C18-Cl2 and C19-Cl3A/B are chloroform molecules on special positions of symmetry, thermal ellipsoids with 50% probability.

Figure ESI.3: Detailed illustration of the octahedral arrangement of the chloroform molecules around the chloride ion of compound **(2a)** through hydrogen bonds, thermal ellipsoids with 50% probability.

distance	value, Å		
Al1-013	1.8186(15)		
Al2-013	1.8458(16)		
Al3-013	1.8416(16)		
Al1-03	1.8867(19)		
Al1–O10	1.8994(18)		
Al1–01	1.9007(18)		
Al1-012	1.9079(18)		
Al1–N1	2.158(2)		
Al2-02	1.8753(19)		
Al2–05	1.8900(18)		
Al2–07	1.8961(18)		
Al2-04	1.9002(17)	angle	value, °
Al2–N2	2.1197(19)	013–Al1–O3	96.66(8)
Al3-06	1.8651(19)	013–Al1–O10	98.66(7)
Al3–011	1.8944(17)	013–Al1–O1	97.46(7)
Al3-09	1.9007(19)	013–Al1–O12	97.49(7)
Al3-08	1.9068(17)	013–Al2–O2	96.79(8)
Al3–N3	2.113(2)	013–Al2–O5	94.90(8)
01–C1	1.266(3)	013–Al2–07	97.20(7)
O2–C1	1.260(3)	013–Al2–O4	94.02(7)
O3–C2	1.263(3)	013–Al3–O6	93.84(8)
04–C2	1.260(3)	013–Al3–011	95.08(7)
O5–C3	1.248(3)	013–Al3–O9	97.31(8)
O6–C3	1.258(3)	013–Al3–08	96.31(7)
07–C4	1.253(3)	O3-Al1-N1	83.85(9)
08–C4	1.258(3)	010-Al1-N1	80.97(9)
O9–C5	1.255(3)	01–A11–N1	79.75(9)
O10-C5	1.271(3)	012-AI1-N1	85.29(9)
011–C6	1.265(3)	02–Al2–N2	83.64(8)
012-C6	1.261(3)	05-Al2-N2	85.69(8)
NI-C7B	1.362(16)	07-AI2-N2	82.39(8)
NI-C/A	1.413(9)	O4-AI2-N2	85.39(7)
NI-CIU	1.452(4)	00-AI3-N3	84.82(8)
N2-CII	1.492(3)	O11-A13-N3	80.42(8)
N2-C14	1.493(3)	09-AIS-NS	04.03(0) 01 57(0)
NZ-HZ	0.88(3) 1.406(2)	$A11 \cap 12 A12$	110.78(8)
N3-C15	1.490(3) 1 500(2)	$\Delta 11_013_\Delta 12$	120 02(8)
N3-C10	1.500(3)	$\Delta 13_013_\Delta 12$	120.02(8)
N3-H3 N4 C1	1.340(3)	0^{-01}	120.17(0) 124.3(2)
N4-C1	1.340(3) 1.455(3)	02-01-01 04-02-03	124.3(2) 125.2(2)
N4-C22	1.455(3) 1 461(3)	05-03-06	123.2(2) 124 5(2)
N_{-C2}	1.401(3) 1 347(3)	07-04-08	127.3(2) 125 2(2)
N5-C23	1.37(3) 1 460(3)	09-05-010	123.2(2) 124 4(2)
N5-C26	1.460(3)	012 - C6 - 011	1258(2)
N6-C3	1.400(4) 1 345(3)		120.0(2)
N6-C27	1.0 + 5(3) 1 449(3)		
N6-C30	1 463(3)		
N7-C4	1.356(3)		
N7-C31	1.456(3)		
N7-C34	1.459(3)		
N8-C5	1.339(3)		
N8-C35	1.466(3)		
N8-C38	1.459(3)		
N9-C6	1.350(3)		
N9-C39	1.462(4)		
N9-C42	1.460(3)		

Figure ESI.4: Left: selected distances; middle: selected angles; right: benzene molecules in the asymmetric unit of the crystal structure of compound **(1a)**, thermal ellipsoids with 50% probability.

NMR investigations and ligand exchange

Figure ESI.5: Temperature-dependent ¹H NMR (CDCl₃) spectra of compound (1a).

Figure ESI.6: Temperature-dependent ¹³C NMR (CDCl₃) spectra of compound **(1a)**.

Figure ESI.7: H,H COSY spectrum (CDCl₃) of compound **(1a)** at 0°C.

Figure ESI.8: H,H ROESY spectrum (CDCl₃) of compound (1a); red coloured positive intensity; blue coloured negative intensity at 0° C.

Figure ESI.9: Temperature-dependent ¹H NMR (CDCl₃) spectra of compound **(2a)**.

Figure ESI.10: Temperature-dependent ¹³C NMR (CDCl₃) spectra of compound **(2a)**.

Figure ESI.11: H,H COSY spectrum (CDCl₃) of compound (2a) at 0°C.

Figure ESI.12: HSQC spectrum (CDCl₃) of compound **(2a)** at 0°C.

Figure ESI.13: H,H COSY spectrum (CDCl₃) of a compound **(1a)** sample that contains residual pyrrolidine (green marked labels P2 and P3); spectrum was measured at 0° C.

Figure ESI.14: H,H ROESY spectrum (CDCl₃) of a compound **(1a)** sample that that contains residual pyrrolidine (green marked labels P2 and P3); red coloured positive intensity; blue coloured negative intensity; spectrum was measured at 0° C.

Analyses of compounds (1b) and (2b)

distance	value, Å		
Al1-013	1.8135(12)		
Al2013	1.8165(12)		
Al3-013	1.8220(11)		
Al1-01	1.8831(12)		
Al1-012	1.8835(13)		
Al1-03	1.8940(13)		
Al1-010	1.8954(13)		
Al2-07	1.8798(13)		
Al2-05	1.8895(13)		
A12_02	1.0000(10) 1.8960(13)		
A12_04	1.0900(10) 1.8965(13)	angle	value, °
A13_08	1.0703(13) 1.8802(13)	013–Al1–O1	97.69(5)
Al3_011	1.0002(13) 1.8851(13)	013–Al1–012	97.43(5)
A12 00	1.0031(13) 1.0010(13)	013-Al1-03	96.69(5)
A12 06	1.0919(10) 1.0020(12)	013–Al1–O10	95.75(5)
A11 N1	1.0752(13) 2.1175(14)	013–Al2–07	97.37(5)
A12 N2	2.11/3(14) 2.1201(14)	013–Al2–O5	97.55(5)
ALZ-INZ	2.1301(14) 2.1375(14)	013-Al2-02	96.35(5)
AI3-N3	2.12/5(14)	013-Al2-04	96.39(5)
01-01	1.205(2) 1.2602(10)	013–Al3–O8	96.69(5)
02-C1	1.2092(19)	013–Al3–011	97.13(5)
03-02	1.2/0(2)	013–Al3–O6	95.10(5)
04-02	1.26/(2)	013-Al3-09	97.67(5)
05-03	1.2/2(2)	01-Al1-N1	81.85(5)
06-C3	1.2/2(2)	012-Al1-N1	83.05(5)
07-C4	1.2/26(19)	O3-Al1-N1	83.72(6)
08-04	1.2645(19)	010-Al1-N1	83.85(6)
09-05	1.208(2)	07-Al2-N2	83.41(6)
010-05	1.2/3(2)	05-Al2-N2	84.24(5)
011-00	1.2/1(2)	02-Al2-N2	82.88(5)
012-C0	1.200(2) 1.241(2)	04-Al2-N2	81.81(5)
NI-CII	1.341(2) 1.244(2)	08-Al3-N3	81.14(5)
N1-C7	1.344(2) 1.240(2)	011-Al3-N3	83.95(5)
N2-C10	1.340(2) 1.246(2)	09-Al3-N3	84.51(5)
N2-C12	1.340(2)	06-Al3-N3	83.89(5)
N3-C21	1.340(2)	Al1-013-Al2	119.95(6)
N3-C1/	1.346(2)	Al1-013-Al3	119.93(6)
N4-CI	1.340(2)	Al2-013-Al3	120.11(6)
N4-C25	1.401(2)	01-C1-O2	124.90(14)
N4-C22	1.462(2)	04-C2-O3	124.77(15)
N5-C2	1.338(2)	O5-C3-O6	125.01(15)
N5-C26	1.463(2)	08-C4-07	124.76(15)
N5-C29	1.463(3)	09-C5-010	125.13(15)
N6-C3	1.338(2)	012-C6-011	125.16(15)
N6-C30	1.461(2)		
N6-C33	1.463(2)		
N/-C4	1.330(2)		
N/-C34	1.401(2)		
N/-C3/	1.404(2)		
INO-CJ	1.339(2)		
NO-C41	1.460(2)		
INB-C38	1.460(2)		
	1.338(2)		
N9-C42	1.461(2)		
119-645	1.402(2)		

Figure ESI.15: Left: selected distances; middle: selected angles; right: chloroform molecules of the asymmetric unit of the crystal structure of compound **(1b)**, thermal ellipsoids with 50% probability.

Figure ESI.16: Left: Detailed illustration of the disordered carbon atoms C35 and C36 of a carbamate bridge of compound (1b), thermal ellipsoids with 50% probability; right: arrangement of the chloroform molecules around the chloride ion of compound (1b) through hydrogen bonds, thermal ellipsoids with 50% probability.

Figure ESI.17: H,H COSY spectrum (CDCl₃) of compound (1b).

Figure ESI.18: HSQC spectrum (CDCl₃) of compound **(1b)**.

Figure ESI.19: H,H ROESY spectrum (CDCl₃) of compound (1b); red coloured positive intensity; blue coloured negative intensity.

Figure ESI.20: H,H COSY spectrum (CDCl₃) of compound (2b) containing residual piperidine (green marked labels P2, P3 and P4);

Figure ESI.21: HSQC spectrum (CDCl₃) of compound **(2b)** containing residual piperidine (green marked labels P2, P3 and P4); red coloured positive intensity; blue colourednegative intensity.

Figure ESI.22: H,H ROESY spectrum (CDCl₃) of compound **(2b)** containing residual piperidine (green marked labels P2, P3 and P4); red coloured positive intensity; blue coloured negative intensity.