Supporting Information for

High surface activity of Fe-doped NiCoP for hydrogen evolution reaction

Shifan Zhu,^{ab} Yixue Xu,^{ab} Dong Li,^{ab} Lili Song^c and Yuqiao Wang^{*ab}

^a Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.

^b Yangtze River Delta Carbon Neutrality Strategy Development Institute, Southeast University, Nanjing 210096,

China

^c School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China

*Corresponding author. E-mail: yqwang@seu.edu.cn (Y. Wang)

DFT Calculation and Experimental Section

DFT Calculation: The theoretical calculations were performed based on density functional theory (DFT) using the Vienna ab initio simulation package (VASP). The ion-electron interactions were estimated by the projected augmented wave pseudopotential. The exchange-correlation energy was determined by Perdew-Burke-Ernzerhof functional based on the generalized gradient approximation. The slab models were based on the (111) plane of NiCoP and a vacuum layer of 15 Å was applied to exclude interactions in nonperiodic directions. The energy cutoff of 480 eV and Monkhorst-Pack kpoints of 3×3×1 were employed to optimize the slab models and calculate the change of Gibbs free energy. The ionic force and energy convergence were set as 0.02 eV \AA ⁻¹ and 10^{-6} eV, respectively. The adsorption energy of H^* (ΔE_1) and H₂O (ΔE_2) could be calculated as following:

$$
\Delta E_1 = E_{H^*} - (E^* + \frac{1}{2} E_{H_2})
$$
 (1)

$$
\Delta E_2 = E_{H_2O^*} - (E^* + E_{H_2O})
$$
\n(2)

Where H^* is the surface adsorption energy of hydrogen on the catalyst, E^* is the energy of catalyst, E_{H^*} is the surface adsorption energy of hydrogen on the catalyst, E^* i E_{H_2} is the formation energy of H₂, E_{H_2O} ^{*} is the surface adsorption energy of H₂O on the catalyst, H_2O^* E_{H_2O} is the energy of H₂O.

The Gibbs free energy for H^* adsorption was determined by following equation:

$$
\Delta G_{H^*} = \Delta E + \Delta E_{ZPE} - T\Delta S \tag{3}
$$

Where ΔE_{ZPE} and ΔE represent the differences in the zero-point energy and total energy difference between the reactant and product models in each step, ΔS is the entropic contribution.

Preparation of Fe-NiCoP: Firstly, Ni foam substrate was cleaned in 3.0 M HCl and washed with deionized water and ethanol for three times. $Ni(NO₃)₂·6H₂O (4 mmol), Co(NO₃)₂·6H₂O (2 mmol),$ Fe(NO₃)₃·9H₂O (2 mmol), NH₄F·6H₂O (8 mmol) and urea (20 mmol) were dissolved in 60 mL deionized water under stirring for 30 mins to form a homogeneous solution. The solution was transfered into 100 mL Teflon-lined stainless autoclave with a piece of 3×4 cm Ni foam. The autoclave was remained at 120 ℃ for 9 h. Fe-NiCo hydroxide precursor was obtained after drying at 60 ℃ for 8 h under vacuum. Then, the phosphorization process of Fe-NiCo precursor was conducted by using NaH₂PO₂ (4 mmol) as the phosphorus source in a tube furnace at 300 °C for 2 h under Ar₂ atmosphere with a heating rate of 5 $\mathrm{^{\circ}C}$ min⁻¹. NiCoP was prepared according to the above method without $Fe(NO₃)₃·9H₂O$. All the chemicals were analytical grade without further purification.

Characterizations: The morphologies and microstructure were characterized by scanning electron microscopy (SEM, Inspect F50, FEI) and transmission electron microscopy (TEM, F200X, Talos). The crystal structure was analyzed by X-ray diffraction (XRD, Ultima IV, Rigaku) using Cu-Kα radiation ($\lambda = 1.54$ Å). The X-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 250XI) was used to analyze the surface chemical states.

Electrochemical measurements: The electrochemical measurements were performed on the electrochemical workstation (CHI 760E) using a three-electrode cell in 1M KOH. The Fe-NiCoP, graphite rod, and saturated calomel electrode (SCE) were used as the working electrode, counter electrode, and reference electrode, respectively. The Linear sweep voltammetry (LSV) was measured at the scan rate of 2 mV s⁻¹. The Tafel slope was calculated according to the curves of the overpotential versus the logarithm of current density. All potentials were converted to a reversible hydrogen electrode (RHE) using the equation: $E_{RHE} = E_{SCE} + 0.059pH + 0.241$. The electrochemical impedance spectroscopy (EIS) was measured in the frequency range of 0.01 Hz $\sim 10^5$ Hz at the amplitude of 5 mV. The electrochemical active surface area $(ECSA)$ was calculated using the

S**3** / S**11** equation: ϵ_s , where ϵ_d is the double layer capacitance calculated from cyclic voltammetry $ECSA =$ c_{dl} C_{s} , where C_{dl} (CV) curves at different scan rates, c_s represents the general specific capacitance (0.04 mF cm⁻²). The HER turnover frequency (*TOF*) could be calculated according to the following equation:¹⁻³

$$
TOF = \frac{J \times N_A}{2n \times F \times ECSA}
$$
 (4)

where *J* is the current density, N_A is the Avogadro's number (6.02×10²³), *n* is the number of active sites (2.02×10¹⁵ cm⁻²), *F* is the Faraday constant (96485 C mol⁻¹), and *ECSA* is the electrochemical active surface area.

 \circ Fe \bullet Ni \bullet Co \bullet P

Fig. S1 Calculated models of (a_1) Fe-NiCoP and (b_1) NiCoP. H* adsorption models of (a_2) Fe-NiCoP and (b_2) NiCoP.

Fig. S2 (a) H₂O adsorption models of NiCoP and Fe-NiCoP. (b) H₂O adsorption energy.

Fig. S3 Schematic illustration of the fabrication process of Fe-NiCoP.

Fig. S4 XRD patterns of Fe-NiCoP and NiCoP.

Fig. S5 TEM image of Fe-NiCoP.

Fig. S6 The energy dispersive spectroscopy mapping of Fe-NiCoP.

Fig. S7 XPS survey profile of Fe-NiCoP.

Fig. S8 Cyclic voltammetry curves of (a) NiCoP and (b) Fe-NiCoP.

Fig. S9 Comparison of TOF values of NiCoP and Fe-NiCoP.

Table S1 Parameters of the theoretical models

Samples	a(A)	b(A)	c(A)	α°	β°	γ°
NiCoP	11.6088	11.6088	3.3331	90	90	120
Fe-NiCoP	11.6297	11.6297	3.3313	90	90	120

Table S2 Comparison of HER activity with other reported catalysts

Samples	R_s/Ω	R_{ct}/Ω
NiCoP	1.46	3.61
Fe-NiCoP	1.36	2.86

Table S3 The simulated data from EIS curves

References

- 1 Y. Qi, L. Zhang, L. Sun, G. Chen, Q. Luo, H. Xin, J. Peng, Y. Li and F. Ma, *Nanoscale*, 2020, **12**, 1985-1993.
- 2 Y. Zhang, K. E. Arpino, Q. Yang, N. Kikugawa, D. A. Sokolov, C. W. Hicks, J. Liu, C. Felser and G. Li, *Nat. Commun.*, 2022, **13**, 7784.
- 3 L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, M. Chhowalla and D. Voiry, *ACS Nano*, 2019, **13**, 6824-6834.
- 4 T. Chen, Y. Fu, W. Liao, Y. Zhang, M. Qian, H. Dai, X. Tong and Q. Yang, *Energy Fuels*, 2021, **35**, 14169-14176.
- 5 M. Qian, X. Tong, Z. Chen, W. Liao, Y. Fu, H. Dai, Q. Yang and T. Chen, *Ionics*, 2022, **28**, 2301- 2307.
- 6 G. Zhao, Y. Lin, K. Rui, Q. Zhou, Y. Chen, S. X. Dou and W. Sun, *Nanoscale*, 2018, **10**, 19074- 19081.
- 7 Y.-L. Meng, J. Tang, X. Chen, Z.-Y. Niu, Y.-H. Zhao, Y. Pan, X.-F. Wang, X.-Z. Song and Z. Tan, *Inorg. Chem. Commun.*, 2021, **134**, 109058.
- 8 C. Wang, G. Sui, D. Guo, J. Li, L. Zhang, S. Li, J. Xin, D.-F. Chai and W. Guo, *J. Colloid Interf. Sci.*, 2021, **599**, 577-585.
- 9 Y.-N. Wang, Z.-J. Yang, D.-H. Yang, L. Zhao, X.-R. Shi, G. Yang and B.-H. Han, *ACS Appl. Mater. Interfaces*, 2021, **13**, 8832-8843.
- 10 Q. Kang, M. Li, J. Shi, Q. Lu and Feng Gao, *ACS Appl. Mater. Interfaces*, 2020, **12**, 19447- 19456.
- 11 S. Chen, F. Bi, K. Xiang, Y. Zhang, P. Hao, M. Li, B. Zhao and X. Guo, *ACS Sustainable Chem. Eng.*, 2019, **7**, 15278-15288.