Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting information for

Effect of metal matrix M (M=Co, Ni, Cu) on the water

dissociation performance of oxophilic Cr from density functional

theory

Chao Kong^{a*}, Yanxia Han^a, Lijie Hou^a, Liguo Gao^{b*}

(a College of Petrochemical Engineering, Longdong University, Qingyang 745000,

China)

(^b College of Chemistry and Chemical Engineering, Yulin University, Yulin 719000,

China)

*Corresponding author. E-mail address: <u>kongchao010@163.com</u> (C. Kong), liguogao@yulinu.edu.cn (L. Gao).

		r	r		
Sample	Adsorption energy	Site [a/1]	Site [b/2]	Site [c/3]	Site [d/4]
Cr	ΔE_{H_2O}	-1.44	_	-1.58	-
	ΔE_H		-1.59		_
	ΔE_{OH}	-	-5.50	-	-
	ΔE_O	-3.82	-5.23	-	-
Со	ΔE_{H_2O}	-0.56	-	-	-0.51
	ΔE_H	-	-0.67	-0.65	-
	ΔE_{OH}	-	-3.70	-3.75	-
	ΔE_O	-	-2.86	-2.91	-
Cr-Co	ΔE_{H_2O}	-0.95	-	-	-
	ΔE_H	-	-0.66	-0.63	-
	ΔE_{OH}	-3.55	-4.11	-4.15	-
	ΔE_O	-2.84	-3.48	-3.58	-
Ni	ΔE_{H_2O}	-0.59	-	-	-
	ΔE_H	-	-0.65	-0.64	-
	ΔE_{OH}	-	-3.47	-3.35	-
	ΔE_O	-	-2.51	-2.39	-
Cr-Ni	ΔE_{H_2O}	-1.07	-	-	-
	ΔE_H	-	-0.73	-0.68	-

Table S1 ΔE_{H_20} , ΔE_H , ΔE_{OH} , ΔE_O on active sites of Cr, M (Co, Ni, Cu), and Cr-M

surface.

	ΔE_{OH}	-3.64	-3.93	-3.81	-
	ΔE_O	-2.94	-3.30	-3.26	-
Cu	ΔE_{H_2O}	-0.40	-	-	-
	ΔE_H	-	-0.29	-0.28	-
	ΔE_{OH}	-	-3.07	-3.01	-
	ΔE_O	-	-1.79	-1.69	-
Cr-Cu	ΔE_{H_2O}	-0.89	-	-	-
	ΔE_H	0.23	-0.44	-0.43	-
	ΔE_{OH}	-3.56	-3.66	-3.61	-
	ΔE_O	-2.71	-2.89	-2.81	-

Fig. S1 (A) Optimized geometries of initial state, transition state, and final state in H₂O dissociation step on Ni adjacent to Cr in Cr-Ni (the unit of bond length is Å, the gray-blue, gray, white, and red balls represent Ni, Cr, H, and O atom, respectively); (B) Potential energy diagram for H₂O dissociation pathway on Ni adjacent to Cr in

Cr-Ni.

Sample	Site [a/1]	Site [b/2]	Site [c/3]	Site [d/4]
Cr	-	-1.34	-	-
Со	-	-0.43	-0.42	-
Cr-Co	-	-0.43	-0.40	-
Ni	-	-0.41	-0.40	-
Cr-Ni	-	-0.49	-0.44	-
Cu	-	-0.05	-0.05	-
Cr-Cu	0.39	-0.20	-0.19	-

Table S2 ΔG_H (eV) on active sites of Cr, M (Co, Ni, Cu), and Cr-M surface.

electrolyte				
Catalyat	Current density	-η at corresponding	Tafel slope	
Catalyst	(- <i>j</i> , mA cm ⁻²)	j(mV)	(mV dec ⁻¹)	
Cu [21]	8	575~580	143	
Ni [22]	10	322	164	
Co [38]	10	~250	161	
Cr-Ni [22]	10	203	124	
Cr [22]	0.1	~500	-	

 Table S3 HER performance on reported transition metal catalysts in alkaline