Electronic supplementary information CRYSTAL STRUCTURE AND CYTOTOXIC ACTIVITY OF Cu(II) COMPLEXES WITH *BIS*—BENZOXAZOLYLHYDRAZONE OF 2,6-DIACETYLPYRIDINE

Yulia P. Tupolova^{a*}, Leonid D. Popov^a, Valery G. Vlasenko^b, Konstantin B. Gishko^a, Anna A. Kapustina^a, Alexandra G. Berejnaya^a, Yuliya A. Golubeva^c, Lyubov S. Klyushova^d, Elizaveta V. Lider^c, Vladimir A. Lazarenko^e, Stanislav S. Bachurin^f, Igor N. Shcherbakov^a

^aDepartment of Chemistry, Southern Federal University, Rostov-on-Don, 344090, Russia

^bScientific Research Institute of Physics, Southern Federal University, Rostov-on-Don, 344090, Russia

^cNikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia

^dInstitute of Molecular Biology and Biophysics of Federal State Budget Scientific Institution "Federal Research Center of Fundamental and Translational Medicine"

(IMBB FRC FTM), 2/12, Timakova str., 630060, Novosibirsk, Russia

^eNational Research Center "Kurchatov Institute", Acad. Kurchatov Sq., 1, Moscow, 123182, Russia

^fDepartment of General and Clinical Biochemistry N2, Rostov State Medical University, Rostov-on-Don, 344022, Russia

*corresponding author: E-mail address: yptupolova@sfedu.ru (Yu.P. Tupolova), Tel./fax: +7 863 2975148.

	Calculated		Experimental
Assignment	Frequency, cm ⁻¹	Intensity, kM mol ⁻¹	Frequency, cm ⁻¹ (intensity [*])
ν(NH)	3431	26 20	3453(m)
v _s (CH, benzox)	3094	33	3097(w)
v _{as} (CH, benzox)	3090 3077	34	3058(w)
$v_{as}(CH_3)$ $v_{c}(CH_3)$	2952 2911	41	2963(w)
v(C=N, benzox)	1636	1582	1632(s)
v(C=N, azom)	1607	230	1619(m)
v(C=C, aromatic)	1568	562	1580(s) 1565(m)
v(C=C, pyridine)	1556	543	1541(m)
$\delta(CH_3)$	1444	252	1453(m)
δ(CH, pyridine)	1426	205	1406(w)
$v(C-O) + \delta(NH)$	1233	377	1277(w)
v(benzox ring)	1220	558	1239(w)
δ(CH, pyridine)	1159	569	1168(w)

Table S1. Experimental and calculated (for isomer 1a) IR spectral data of bis-benzoxazolylhydrazone 1

*Intensities are denoted as follows: vs-very strong, s-strong, m-medium, w-weak.

Optimized cation structure of complex 2

	Calculated		Experimental
Assignment	Frequency, cm ⁻¹	Intensity, kM mol ⁻¹	Frequency, cm ⁻¹ (intensity [*])
v(CH, benzox)	3097 3083	16 23	3097(w)
v(CH, pyridine)	3076 2988	18 13	3061(w)
v(CH ₃)	2973 2927	15 22	2924(w)
ν(NH)	2780	963	3189(w)
$v(N=C, hydraz1) + v(C-N, benzox1) + \delta(NH)$	1646	1316	1649(s) 1624(m) 1592(w)
$v(N=C, hydraz2) + v(C=N, azom1) + \delta(NH) + v(NO_3)$	1531 1511 1487	327 286 564	1524(m) 1506(w) 1477(w)
$v(CN, pyridine) + \delta(CH_3)$ $v(C-C, azom) + v(NO_2) +$	1393	529 346	1391(m) 1312(s)
$\delta(N=C, benzox1)$	1286	366	1290(s) 1215(m)
v(N–N)	1177	217	1158(s)

*Intensities are denoted as follows: vs-very strong, s-strong, m-medium, w-weak.

Optimized cation structure of complex 3

	Calculated		Experimental
Assignment	Frequency,	Intensity kM mol ⁻¹	Frequency, cm ⁻¹
	cm^{-1}	Intelisity, KW mor	(intensity [*])
v _s (H ₂ O)	3741	51	2250(m)
$v_{as}(H_2O)$	3642	17	5550(w)
v(NH)	3318	259	3287(w)
$u(N-C) = budroz(1) + \delta(NH)$	1625	1227	1650(s)
V(N-C, Hydraz I) + O(NH)	1055	1327	1630(m)
			1594(m)
v(C=C, pyridine) + v(C=N, azom2)	1564	220	1573(w)
			1543(m)
v(N=C, hydraz2) + v(C=N, azom1)	1504	564	1516(m)
v(N=C, hydraz2)	1475	254	1474(m)
$v(CN, pyridine) + \delta(CH_3)$	1391	429	1416(m)
δ (N=C, hydraz1) + v(C-C, azom)	1310	332	1330(m)
$v(\mathbf{N}, \mathbf{N})$	1220	166	1218(w)
V(1N-1N)	1181	200	1162(m)

*Intensities are denoted as follows: vs-very strong, s-strong, m-medium, w-weak.

Table S4. Experimental and calculated IR spectral data of complex 4

Optimized cation structure of complex 4

	Calculated		Experimental
Assignment	Frequency, cm ⁻¹	Intensity, kM mol ⁻¹	Frequency, cm ⁻¹ (intensity [*])
	3096	18	
v(CH, benzox)	3083	21	2062(m)
	3081	19	5002(w)
v(CH, pyridine)	3076	18	
v(NH)	2936	928	3242(w)
v(N=C, hydraz1)	1638	1319	1667(m)
v(C=C, pyridine) + v(C=N, azom2)	1565	158	1616(m) 1589(m)
v(N=C, hydraz2) + v(C=N,	1515	529	1514(-)
azom1)	1479	363	1514(8)
(CN mentione) + S(CH)	1201	470	1407(w)
$V(CN, pyridine) + O(CH_3)$	1391	4/9	1375(w)
v(C=C, benzox)	1343	159	1345(w)
δ (N=C, hydraz2)	1335	192	1202()
v(C–C, azom)	1315	325	1303(W)
	1219	219	1244(w)
V(IN-IN)	1173	199	1198(w)

*Intensities are denoted as follows: vs-very strong, s-strong, m-medium, w-weak.

Optimized cation structure of complex 5

	Calculated		Experimental
Assignment	Frequency, cm ⁻¹	Intensity, kM mol ⁻¹	Frequency, cm ⁻¹ (intensity [*])
v(CH, benzox)	3096 3083 3081	17 21 19	3094(w)
ν(CH, pyridine) ν(CH ₃) ν(NH)	3075 2925 2865	18 27 957	3044(w) 2954(w) 3248(w)
v(N=C, hydraz1)	1636	1335	1640(s) 1618(s)
v(C=C, pyridine) + v(C=N, azom2)	1566	174	1590(m)
v(C=C, pyridine) + v(N=C, hydraz2) + v(C=N, azom1)	1517 1479	543 384	1511(s) 1476(m) 1460(m)
$v(CN, pyridine) + \delta(CH_3)$ $\delta(N=C, hydraz2) + v(C=C, henzox2)$	1392 1343 1335	508 176 180	1415(m) 1352(m)
v(C=C, pyridine) + v(C-C, azom)	1315	287	1329(m)
v(N–N)	1220 1175	221 206	1207(w) 1160(m)

*Intensities are denoted as follows: vs-very strong, s-strong, m-medium, w-weak.

Fig. S1. Morphological changes of MRC-5 cells after 48 hours incubation with **2**, according to analysis of dual staining with Hoechst 33342/ propidium iodide (PI) and bright-field microscopy. Cells were treated with: above – no treatment (control); below – **2**, 1 μ M. The cells were classified as live cells (normal nuclei: blue noncondensed chromatin uniformly dispersed over the entire nucleus), apoptotic cells (round cells, bright blue chromatin that is highly condensed or fragmented) and dead cells (red, enlarged nuclei with smooth normal structure or bright red, slightly condensed nuclei).

Fig. S2. Time-dependent UV–vis absorption spectra of the complex **2** (a) and **5** (b) in water–DMSO solution (1:40 by volume) and in phosphate buffer saline (in the insert) at t = 0, 24, 48 h.

B

A

С

3

E

Fig. S3. Cyclic voltammograms in DMSO solution containing 0.1M LiClO₄ and H₂L (panel A, in the insert – CVA LiClO₄ in DMSO), **2** (panel B), **3** (panel C), **4** (panel D) and **5** (panel E).

Fig. S4. Effect of **1-5** and cisplatin on the viability of HepG2 and MRC-5 cells determined by dual staining with Hoechst 33342/propidium iodide.