## Stereochemical insights into neuroprotective lignanamides from the

## herbs of Solanum lyratum

Ye Chang<sup>a, 1</sup>, Zhi-Kang Duan<sup>a, 1</sup>, Xin Zhang<sup>a</sup>, Jiao-Yang Hou<sup>a</sup>, Jia-Qi Niu<sup>a</sup>, Guo-Dong Yao<sup>a</sup>, Bin Lin<sup>b</sup>, Shao-Jiang Song <sup>a</sup>, Ming Bai<sup>a, \*</sup>, Xiao-Xiao Huang<sup>a, \*</sup>

 <sup>a</sup> Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
<sup>b</sup> School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China

<sup>1</sup> The two authors contributed equally to this work

\*Corresponding authors.

Ming Bai, baiming1990@163.com

Xiao-Xiao Huang, xiaoxiao270@163.com

Fig. S1. The <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ ) spectrum of compounds 1a/1b.....1 Fig. S2. The <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>) spectrum of compounds 1a/1b .....1 Fig. S3. The HSQC (600 MHz, DMSO- $d_6$ ) spectrum of compounds 1a/1b ......2 Fig. S4. The HMBC (600 MHz, DMSO- $d_6$ ) spectrum of compounds 1a/1b ......2 Fig. S5. The  ${}^{1}\text{H}{}^{-1}\text{H}$  COSY (600 MHz, DMSO- $d_{6}$ ) spectrum of compounds 1a/1b .....3 Fig. S8. The <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ ) spectrum of compounds 2a/2b......4 Fig. S12. The <sup>1</sup>H-<sup>1</sup>H COSY (600 MHz, DMSO- $d_6$ ) spectrum of compounds 2a/2b ....6 Fig. S13. The HRESIMS spectrum of compounds 2a/2b.....7 Fig. S14. The UV spectrum of compounds 2a/2b .....7 Fig. S16. The <sup>13</sup>C NMR (150 MHz, DMSO- $d_6$ ) spectrum of compounds 3a/3b .........8 Fig. S17. The HSQC (600 MHz, DMSO-d<sub>6</sub>) spectrum of compounds 3a/3b ......9 Fig. S19. The  ${}^{1}\text{H}{}^{-1}\text{H}$  COSY (600 MHz, DMSO- $d_6$ ) spectrum of compounds 3a/3b ..10 Fig. S20. The HRESIMS spectrum of compounds 3a/3b.....10 Fig. S21. The UV spectrum of compounds 3a/3b .....11 Fig. S22. The <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ ) spectrum of compounds 4a/4b.....11 Fig. S23. The <sup>13</sup>C NMR (150 MHz, DMSO- $d_6$ ) spectrum of compounds 4a/4b ......12 Fig. S24. The HSQC (600 MHz, DMSO-d<sub>6</sub>) spectrum of compounds 4a/4b .....12 Fig. S25. The HMBC (600 MHz, DMSO- $d_6$ ) spectrum of compounds 4a/4b ......13 Fig. S26. The  ${}^{1}\text{H}{}^{-1}\text{H}$  COSY (600 MHz, DMSO- $d_6$ ) spectrum of compounds 4a/4b ..13 Fig. S27. The HRESIMS spectrum of compounds 4a/4b.....14 Fig. S29. The <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ ) spectrum of compounds 5a/5b......15 Fig. S30. The <sup>13</sup>C NMR (150 MHz, DMSO- $d_6$ ) spectrum of compounds 5a/5b ......15 Fig. S31. The HSQC (600 MHz, DMSO- $d_6$ ) spectrum of compounds 5a/5b ......16 Fig. S32. The HMBC (600 MHz, DMSO- $d_6$ ) spectrum of compounds 5a/5b ......16 Fig. S33. The  ${}^{1}\text{H}{}^{-1}\text{H}$  COSY (600 MHz, DMSO- $d_6$ ) spectrum of compounds 5a/5b ..17 Fig. S34. The HRESIMS spectrum of compounds 5a/5b.....17 Fig. S36. The <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ ) spectrum of compounds 6a/6b......18 Fig. S37. The <sup>13</sup>C NMR (150 MHz, DMSO- $d_6$ ) spectrum of compounds 6a/6b ......19 Fig. S38. The HSQC (600 MHz, DMSO- $d_6$ ) spectrum of compounds 6a/6b ......19 Fig. S39. The HMBC (600 MHz, DMSO- $d_6$ ) spectrum of compounds 6a/6b ......20 Fig. S40. The  $^{1}$ H- $^{1}$ H COSY (600 MHz, DMSO- $d_{6}$ ) spectrum of compounds 6a/6b ..20 Fig. S41. The HRESIMS spectrum of compounds 6a/6b.....21 Fig. S43. The <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ ) spectrum of compound 7 ......22 

| Fig. S45. The HSQC (600 MHz, DMSO- $d_6$ ) spectrum of compound 7                      | 23 |
|----------------------------------------------------------------------------------------|----|
| Fig. S46. The HMBC (600 MHz, DMSO- <i>d</i> <sub>6</sub> ) spectrum of compound 7      | 23 |
| Fig. S47. The $^{1}$ H- $^{1}$ H COSY (600 MHz, DMSO- $d_{6}$ ) spectrum of compound 7 | 24 |
| Fig. S48. The HRESIMS spectrum of compound 7                                           | 24 |
| Fig. S49. The UV spectrum of compound 7                                                | 25 |
| Table S1. Inhibitory activities of AChE by compounds from S. lyratum                   | 25 |



Fig. S1. The <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ ) spectrum of compounds 1a/1b



Fig. S2. The <sup>13</sup>C NMR (150 MHz, DMSO- $d_6$ ) spectrum of compounds 1a/1b



Fig. S3. The HSQC (600 MHz, DMSO- $d_6$ ) spectrum of compounds 1a/1b



Fig. S4. The HMBC (600 MHz, DMSO- $d_6$ ) spectrum of compounds 1a/1b



Fig. S5. The <sup>1</sup>H-<sup>1</sup>H COSY (600 MHz, DMSO-*d*<sub>6</sub>) spectrum of compounds 1a/1b



Fig. S6. The HRESIMS spectrum of compounds 1a/1b



Fig. S7. The UV spectrum of compounds 1a/1b



Fig. S8. The <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ ) spectrum of compounds 2a/2b



Fig. S9. The <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>) spectrum of compounds 2a/2b



Fig. S10. The HSQC (600 MHz, DMSO-*d*<sub>6</sub>) spectrum of compounds 2a/2b



Fig. S11. The HMBC (600 MHz, DMSO- $d_6$ ) spectrum of compounds 2a/2b



Fig. S12. The <sup>1</sup>H-<sup>1</sup>H COSY (600 MHz, DMSO- $d_6$ ) spectrum of compounds 2a/2b







Fig. S14. The UV spectrum of compounds 2a/2b

2.777

208.0

3 🕥



Fig. S15. The <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ ) spectrum of compounds 3a/3b



Fig. S16. The <sup>13</sup>C NMR (150 MHz, DMSO- $d_6$ ) spectrum of compounds 3a/3b



Fig. S17. The HSQC (600 MHz, DMSO- $d_6$ ) spectrum of compounds 3a/3b



Fig. S18. The HMBC (600 MHz, DMSO-d<sub>6</sub>) spectrum of compounds 3a/3b



Fig. S19. The <sup>1</sup>H-<sup>1</sup>H COSY (600 MHz, DMSO-*d*<sub>6</sub>) spectrum of compounds 3a/3b



10



Fig. S21. The UV spectrum of compounds 3a/3b



Fig. S22. The <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ ) spectrum of compounds 4a/4b



Fig. S23. The <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>) spectrum of compounds 4a/4b

![](_page_14_Figure_2.jpeg)

Fig. S24. The HSQC (600 MHz, DMSO-d<sub>6</sub>) spectrum of compounds 4a/4b

![](_page_15_Figure_0.jpeg)

Fig. S25. The HMBC (600 MHz, DMSO-d<sub>6</sub>) spectrum of compounds 4a/4b

![](_page_15_Figure_2.jpeg)

Fig. S26. The <sup>1</sup>H-<sup>1</sup>H COSY (600 MHz, DMSO- $d_6$ ) spectrum of compounds 4a/4b

![](_page_16_Figure_0.jpeg)

Fig. S27. The HRESIMS spectrum of compounds 4a/4b

![](_page_16_Figure_2.jpeg)

Fig. S28. The UV spectrum of compounds 4a/4b

![](_page_17_Figure_0.jpeg)

Fig. S29. The <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ ) spectrum of compounds 5a/5b

![](_page_17_Figure_2.jpeg)

Fig. S30. The  ${}^{13}$ C NMR (150 MHz, DMSO- $d_6$ ) spectrum of compounds 5a/5b

![](_page_18_Figure_0.jpeg)

Fig. S31. The HSQC (600 MHz, DMSO-d<sub>6</sub>) spectrum of compounds 5a/5b

![](_page_18_Figure_2.jpeg)

Fig. S32. The HMBC (600 MHz, DMSO- $d_6$ ) spectrum of compounds 5a/5b

![](_page_19_Figure_0.jpeg)

Fig. S33. The <sup>1</sup>H-<sup>1</sup>H COSY (600 MHz, DMSO-*d*<sub>6</sub>) spectrum of compounds 5a/5b

![](_page_19_Figure_2.jpeg)

Fig. S34. The HRESIMS spectrum of compounds 5a/5b

![](_page_20_Figure_0.jpeg)

Fig. S35. The UV spectrum of compounds 5a/5b

![](_page_20_Figure_2.jpeg)

Fig. S36. The <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ ) spectrum of compounds 6a/6b

![](_page_21_Figure_0.jpeg)

Fig. S37. The <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>) spectrum of compounds 6a/6b

![](_page_21_Figure_2.jpeg)

Fig. S38. The HSQC (600 MHz, DMSO-d<sub>6</sub>) spectrum of compounds 6a/6b

![](_page_22_Figure_0.jpeg)

Fig. S39. The HMBC (600 MHz, DMSO-*d*<sub>6</sub>) spectrum of compounds 6a/6b

![](_page_22_Figure_2.jpeg)

Fig. S40. The <sup>1</sup>H-<sup>1</sup>H COSY (600 MHz, DMSO-*d*<sub>6</sub>) spectrum of compounds 6a/6b

![](_page_23_Figure_0.jpeg)

Fig. S41. The HRESIMS spectrum of compounds 6a/6b

![](_page_23_Figure_2.jpeg)

Fig. S42. The UV spectrum of compounds 6a/6b

![](_page_24_Figure_0.jpeg)

Fig. S43. The <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ ) spectrum of compound 7

![](_page_24_Figure_2.jpeg)

Fig. S44. The <sup>13</sup>C NMR (150 MHz, DMSO- $d_6$ ) spectrum of compound 7

![](_page_25_Figure_0.jpeg)

Fig. S46. The HMBC (600 MHz, DMSO- $d_6$ ) spectrum of compound 7

![](_page_26_Figure_0.jpeg)

Fig. S47. The <sup>1</sup>H-<sup>1</sup>H COSY (600 MHz, DMSO- $d_6$ ) spectrum of compound 7

![](_page_26_Figure_2.jpeg)

Fig. S48. The HRESIMS spectrum of compound 7

![](_page_27_Figure_0.jpeg)

Fig. S49. The UV spectrum of compound 7

Table S1. Inhibitory activities of AChE by compounds from S. lyratum

| Compound  | IC <sub>50</sub> for AChE (µmol/L) <sup>a</sup> |
|-----------|-------------------------------------------------|
| 2a        | 3.55±1.72                                       |
| 6a        | 8.62±4.98                                       |
| Donepezil | 3.12±0.006                                      |

<sup>a</sup>Results represent means $\pm$ SD (*n*=3) and all values are significantly different (*P*<0.05).