Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Materials

Cobalt(II) coordination polymer with 6-aminonicotinate and 1,2-bis(4pyridyl)ethane as a new electrochemical sensor for determination of dopamine

Boris-Marko Kukovec, ^a Ivana Škugor Rončević, ^{*} Nives Vladislavić, ^b Nabanita Chatterjee, ^c Vesna Sokol ^a and Clive L. Oliver, ^{*}^c

^aDepartment of Physical Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia ^bDepartment of General and Inorganic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia ^cDepartment of Chemistry, University of Cape Town, Rondebosch 7701, South Africa

*Corresponding authors:

I. Škugor Rončević e-mail: skugor@ktf-split.hr

C. L. Oliver e-mail: clive.oliver@uct.ac.za

1. Crystal structures

Table S1. Selected bond lengths (Å) and angles (°) for $\{[Co(1,2-bpe)_2(H_2O)_2](6-NH_2nic)(NO_3)\cdot 4H_2O\}_n(1)$.

1	
Bond lengths	
Co1–N1	2.138(3)
Co1–N2 ⁱ	2.170(3)
Co1–N3	2.134(3)
Co1–N4 ⁱⁱ	2.169(4)
Co1–O1	2.096(3)
Co1–O2	2.128(3)
Bond angles	
O1–Co1–O2	177.6(1)
O1–Co1–N3	91.1(1)
O2–Co1–N3	89.7(1)
O1–Co1–N1	88.6(1)
O2–Co1–N1	90.6(1)
N3-Co1-N1	179.4(2)
O1–Co1–N4 ⁱⁱ	90.5(1)
O2–Co1–N4 ⁱⁱ	87.2(1)
N3–Co1–N4 ⁱⁱ	90.4(1)
N1–Co1–N4 ⁱⁱ	89.1(1)
O1–Co1–N2 ⁱ	91.2(1)
O2–Co1–N2 ⁱ	91.1(1)
N3–Co1–N2 ⁱ	87.3(1)
N1–Co1–N2 ⁱ	93.2(1)
N4 ⁱⁱ –Co1–N2 ⁱ	177.1(1)

Symmetry codes (i): x, y-1, z and (ii): x, y+1, z.

D–H···A	<i>d</i> (D–H)/Å	d(H…A)/Å	d(D…A)/Å	$\angle (D-H\cdots A)/^{\circ}$	Symmetry code on A
N6-H61…O8	0.88(1)	2.07(2)	2.895(5)	157(4)	x, y-1, z
N6-H62…O7	0.88(1)	2.35(3)	3.163(5)	156(5)	x+1/2, -y+1, z
01–H11…011	0.84(1)	1.83(2)	2.658(4)	175(5)	x, y, z
O1–H12…O3	0.83(1)	1.88(2)	2.692(4)	164(5)	-x+3/2, y, z+1/2
O2-H21…O6	0.84(1)	1.90(2)	2.723(4)	169(4)	x, y, z
O2–H22…O4	0.84(1)	1.83(2)	2.665(4)	171(4)	х, у, z
O8–H81…O3	0.84(1)	1.82(2)	2.659(5)	175(5)	x, y, z
O8–H82…O2	0.84(1)	2.36(3)	3.072(5)	143(4)	x, y, z
O9–H91…O6	0.84(2)	1.98(2)	2.798(5)	166(5)	х, у, z
O9–H92…N5	0.84(2)	2.03(2)	2.874(5)	175(6)	x-1/2, -y+1, z
O10-H101…O4	0.84(1)	2.07(2)	2.904(4)	175(5)	-x+1, -y+1, z+1/2
O10-H102····O9	0.84(1)	1.96(2)	2.776(5)	165(5)	-x+1, -y+1, z+1/2
011–H111…07	0.83(1)	1.96(2)	2.778(4)	168(5)	-x+1, -y+2, z+1/2
O11-H112···O10	0.83(1)	1.92(2)	2.732(4)	164(5)	х, у, z
C2-H2N6	0.95	2.62	3.539(6)	163	x-1/2, -y+1, z
C10-H10-O4	0.95	2.36	3.282(5)	163	x, y+1, z
C11–H11A…O11	0.95	2.41	3.355(6)	173	x, y+1, z
C24–H24…O6	0.95	2.49	3.428(5)	168	-x+3/2, y-1, z+1/2

Table S2. The hydrogen bond geometry for $\{[Co(1,2-bpe)_2(H_2O)_2](6-NH_2nic)(NO_3)\cdot 4H_2O\}_n$ (1).

Sample	Added	Added standard DA	Peak current	Found	Recovery	RSD
no.	sample	(µmol L ⁻¹)	(µA)	(µmol L ⁻¹)	(%)	(%)
1	100 µL	-	23.81			1.8
2		1	24.62	1.51	73.39	1.6
3		2	26.03	2.80	100.92	0.3
4		3	27.08	3.72	97.86	0.5
5		4	27.70	4.36	89.45	0.7

Table S3. The application of GCE modified with polymer 1 for determination of dopamine (n = 3) in urine sample.

(Content of the sample found 0.78 μ mol L⁻¹; 0.119 mg/L)

2. IR spectra

Figure S1. IR spectrum of $\{[Co(1,2-bpe)_2(H_2O)_2](6-NH_2nic)(NO_3)\cdot 4H_2O\}_n(1).$

3. TGA/DSC curves

Figure S2. TGA/DSC curves of $\{ [Co(1,2-bpe)_2(H_2O)_2] (6-NH_2nic)(NO_3) \cdot 4H_2O \}_n (1)$.

4. Electrochemical measurements

Figure S3. Effect of the electrochemical parameters on peak current for SWV on GCE|1 electrode in 0.1 mol dm⁻³ solution of KCl (pH 6.0) containing 0.1 mM of dopamine: (A) frequency (*f*) with different potential increment (ΔE_s); (B) pulse height (ΔE_p).

Figure S4. The relationship of interference current response (ΔI) relative to DA current response (ΔI_0) .