Supporting Information

Special tailoring of copper-pyromellitic acid complex with sulfonated poly(ether ether ketone) to form composite membrane for polymer electrolyte fuel cells

Anil Kumar U.,^[a,b,#] R. Sakthivel,^[a,b,#] Asis Sethi,^[a,b] Baskaran Mohan Dass,^[a] Santoshkumar D Bhat,^{*[a,b]} Vishal M. Dhavale,^{*[a,b]}

^aCSIR-Central Electrochemical Research Institute-Madras Unit, CSIR Madras Complex, Taramani, Chennai 600113, India.

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201 002, India.

[#]Contributed equally to this work.

Figure No	Content	Page No
Figure S1	EDAX analysis of sPEEK and different wt. % composite membranes	3
Figure S2	AFM analysis of sPEEK and different wt. % composite membranes	4
Figure S3	Chemical stability of sPEEK and sPEEK/Cu-PMA-0.5 wt.% composite membrane and optical images before and after the chemical degradation test	5
Figure S4	Comparative XRD patterns of copper acetate, pyromellitic acid (PMA), as-prepared Cu-PMA	5
Figure S5	Comparative FT-IR spectra of pyromellitic acid and as prepared Cu- PMA, sPEEK, sPEEK/Cu-PMA 0.5 wt.% composite membrane and FE- SEM image of Cu-PMA, and proposed structure for Cu-PMA	6
Figure S6	¹ H-NMR spectra of sPEEK and sPEEK/Cu-PMA-0.5 wt.% composite membrane.	7
Figure S7	XPS Spectra of Cu 2P, C1s, O1s and survey spectra of Cu-PMA	8
Figure S8	Comparative water uptake % results at room temperature and 60 °C for sPEEK and composite membranes of different wt. %	8
Figure S9	Comparative water uptake, IEC, hydration number results for sPEEK and different wt. % composite membranes	9
Figure S10	EIS plots for sPEEK and different wt. % composite membranes recorded at different temperature (30 – 90 °C) at 98% RH condition	9
Figure S11	EIS plots of sPEEK/Cu-PMA-0.5 wt.% composite membrane recorded for the stability assessment	10
Figure S12	Durability test result of OCV measurement as function of time for sPEEK/Cu-PMA-0.5 wt.% composite membrane-based MEA for 125 hours and illustration of Voltage decay rate for sPEEK, Nafion 212 and sPEEK/Cu-PMA-0.5 wt.% composite membrane-based MEA	10

Table of contents:

Figure S13	Polarisation curves recorded during OCV degradation test for Nafion, sPEEK and sPEEK/Cu-PMA-0.5 wt.% based MEA's after regular intervals	11
Figure S14	Solid-state cyclic voltammogram and hydrogen crossover study for Nafion 212, sPEEK, sPEEK/Cu-PMA composite membranes in regular time intervals	11
Figure S15	UV-vis spectra of sPEEK/Cu-PMA-0.5 wt.% after 100 hrs of fuel cell operation	12
Figure S16	Constant current discharge rate test result as function of time for MEA's of sPEEK, sPEEK/Cu-PMA-0.5 wt.% composite membrane and Nafion 212, and Voltage decay rate for sPEEK, Nafion 212 and sPEEK/Cu-PMA-0.5 wt.% composite membrane-based MEA	12
Figure S17	Polarisation curves recorded during constant current discharge test for Nafion, sPEEK and sPEEK/Cu-PMA-0.5 wt.% based MEA's	13
Figure S18	Comparative p-XRD diffraction pattern of Cu-PMA before and after stability test	13
Figure S19	Snapshot of sPEEK/Cu-PMA-0.5 wt.% composite membrane-based MEA	14
Table S1	Comparative list of the properties and fuel cell performance of the as- prepared sPEEK/Cu-PMA composite membrane with the literature reports	15
	References	16

Figure S1: *EDAX analysis of (a) sPEEK, (b) sPEEK/Cu-PMA-0.25 wt.%, (c) sPEEK/Cu-PMA-0.5 wt.%, (d) sPEEK/Cu-PMA-0.75 wt.%, and (e) sPEEK/Cu-PMA-1 wt.%.*

Figure S2. *AFM analysis of (a) sPEEK, (b) sPEEK/Cu-PMA-0.25 wt.%, (c) sPEEK/Cu-PMA-0.5 wt.%, (d) sPEEK/Cu-PMA-0.75 wt.%, and (e) sPEEK/Cu-PMA-1 wt.%*

Figure S3: a) Chemical stability of sPEEK and sPEEK/Cu-PMA-0.5 wt.% composite membrane and b) Optical images of sPEEK, Nafion 212 and sPEEK/Cu-PMA-0.5 wt.% composite membrane at regular time intervals.

Figure S4. Comparative XRD patterns of the as-prepared sPEEK, sPEEK/Cu-PMA-0.25 wt.%, sPEEK/Cu-PMA-0.5 wt.%, sPEEK/Cu-PMA-0.75 wt.%, and sPEEK/Cu-PMA-1 wt.% composite membranes.

Figure S5. a) Comparative FT-IR spectra of pyromellitic acid, Cu-PMA, sPEEK and sPEEK/Cu-PMA-0.5 wt.% membrane, enlarged view is green shaded region of fig. a, b) SEM image of Cu-PMA, and c) Proposed structure for Cu-PMA complex.

Figure S6. *a*, *b*) ¹*H*-*NMR spectra of sPEEK (top), and sPEEK/Cu-PMA-0.5 wt.% composite membrane (bottom), respectively.*

Figure S7: a) Survey spectrum of Cu-PMA, high resolution XPS of b) C1s, c) O1s, and d) Cu2p.

Figure S8. Comparative water uptake results for the as-prepared sPEEK, sPEEK/Cu-PMA-0.25 wt.%, sPEEK/Cu-PMA-0.5 wt.%, sPEEK/Cu-PMA-0.75 wt.%, and sPEEK/Cu-PMA-1 wt.% composite membranes at room temperature (RT) and 60 °C temperature.

Figure S9. Water uptake, IEC, and Lambda value for the as-prepared sPEEK, sPEEK/Cu-PMA-0.25 wt.%, sPEEK/Cu-PMA-0.5 wt.%, sPEEK/Cu-PMA-0.75 wt.%, and sPEEK/Cu-PMA-1 wt.% composite membranes.

Figure S10. (*a-e*) EIS plots of as-prepared sPEEK, sPEEK/Cu-PMA-0.25 wt.%, sPEEK/Cu-PMA-0.5 wt.%, sPEEK/Cu-PMA-0.75 wt.%, and sPEEK/Cu-PMA-1 wt.% composite membranes recorded at different temperatures of 30 - 90 °C, and at 98% RH. (*a'-e'*) are corresponding magnified plots marked with different colours.

Figure S11. *EIS plots of sPEEK/Cu-PMA-0.5 wt.% composite membrane recorded for the stability assessment. EIS plot for the Ist cycle (Heating) is shown in Figure S10c, and subsequent IInd and IIIrd cycles of the cooling and heating is shown here a and b, respectively.*

Figure S12: *a)* Durability test result of OCV measurement as function of time for sPEEK/Cu-PMA 0.5 wt.% composite membrane-based MEA for 125 hrs. <u>Conditions:</u> Anode and Cathode side -commercial Pt/C electrodes, Pt-loading- 0.5 mg-Pt/cm² at anode and cathode side, respectively; Active area: 7.0 cm², Cell temperature- 80 °C, Relative humidity: 30 % RH at both side, Gases – Pure hydrogen (100 mL/min) and air (150 mL/min) as a fuel and oxidant at anode and cathode side, respectively. b) Measured degradation rate for Nafion 212, sPEEK, sPEEK/Cu-PMA 0.5 wt.%, sPEEK/Cu-PMA 0.5 wt.% based MEA's after the durability test. <u>Please Note:</u> In Figure b, Y-axis values of Nafion 212 and Cu-PMA/sPEEK-0.5 wt.% 100 hrs and 125 hrs are of 10x, to show the differences and variations with respect to each other.

Figure S13: Polarisation curves recorded during OCV degradation test. Polarisation curves for a) Nafion 212-based MEA after 0, 25, 50, 75, and 100 hrs of test, b) sPEEK/Cu-PMA-0.5 wt.%-based MEA after 0, 25, 50, 75, and 100 hrs test, c) sPEEK-based MEA after 0, 25, 50, and 75 hrs test. d) Comparison of current density (a) 0.6 V and peak power densities of sPEEK, sPEEK/Cu-PMA-0.5 wt.% and Nafion 212 based MEA's after 0, 25, 50, 75, and 100 hrs test. <u>Conditions:</u> Anode and Cathode side -commercial Pt/C electrodes, Pt-loading- 0.5 mg-Pt/cm² at anode and cathode side, respectively, Active area: 7.0 cm², Cell temperature- 60 °C, Relative humidity: 90 % RH at both side, Gases – Pure hydrogen (1.2 Stio.) and oxygen (3.5 Stio.) as a fuel and oxidant at anode and cathode side, respectively.

Figure S14: *a-c)* Solid-state cyclic voltammogram for Nafion 212, sPEEK, sPEEK/Cu-PMA-0.5 wt.% based MEAs respectively, after regular time intervals during OCV degradation test. d) Change in electrochemical active surface area w.r.t time. e-g) H_2 cross-over study for Nafion 212, sPEEK, sPEEK/Cu-PMA-0.5 wt.% based MEAs respectively. Both the measurements were done at scan rate of 50 mV/s. <u>Conditions:</u> Anode and Cathode commercial Pt/C electrodes, Pt-loading- 0.5 mg_{-Pt}/cm² at both sides, Active area: 7.0 cm², Cell temperature- 60 °C, Relative humidity: 90 % RH at both sides, Gases – Pure hydrogen (100 mL/min), on Anode, and nitrogen (300 mL/min) on cathode side.

Figure S15: Comparative UV-vis spectra of product water collected during OCV stability test of sPEEK/Cu-PMA-0.5 wt.% - based MEA after 100 h, and compared with the standard stock solution of Cu-PMA.

Figure S16: *a)* Constant current discharge test as function of time for MEA's of sPEEK, sPEEK/Cu-PMA-0.5 wt.% composite membrane, and Nafion 212 at constant discharge rate of 0.2 A/cm². <u>Conditions:</u> Anode and Cathode side -commercial Pt/C electrodes, Pt-loading- 0.5 mg_{-Pt}/cm² at anode and cathode side, respectively, Active area: 7.0 cm², Cell temperature- 60 °C, Relative humidity: 50 % RH at both side, Gases – Pure hydrogen (100 mL/min) and oxygen (150 mL/min) as a fuel and oxidant at anode and cathode side, respectively. b) Measured degradation rate for Nafion 212, sPEEK, sPEEK/Cu-PMA 0.5 wt.% based MEA's. <u>Please Note:</u> In Figure S17b, Y-axis values of Nafion 212, and Cu-PMA/sPEEK-0.5 wt.% are of 5x, to show the differences and variations with respect to each other.

Figure S17: Polarisation curves for the MEAs during the constant current discharge rate test (discharge current is 0.2 A/cm^2) as function of time.

Polarisation curves for a) Nafion 212-based MEA's after 0, 25, 50, 75 and 100 h of test, b) sPEEK/Cu-PMA-0.5 wt.% -based MEA after 0, 25, 50, 75 and 100 h of test, c) sPEEK-based MEA after 0, 25, 50, and 75 hrs of test. d) Observed current density (a) cell voltage of 0.6 V and peak power densities from the polarisation curves presented in (a-c) for the Nafion 212, sPEEK/Cu-PMA 0.5 wt.% and sPEEK based MEA's. <u>Conditions:</u> Anode and Cathode side -commercial Pt/C electrodes, Pt-loading- 0.5 mg-Pt/cm² at anode and cathode side, respectively, Active area: 7.0 cm², Cell temperature- 60 °C, Relative humidity: 90 % RH at both side, Gases – Pure hydrogen (1.2 Stio.) and oxygen (3.5 Stio.) as a fuel and oxidant at anode and cathode side, respectively

Figure S18. Comparative p-XRD diffraction pattern of Cu-PMA before and after stability test.

Figure S19: Snapshot of sPEEK/Cu-PMA-0.5 wt.% composite membrane-based MEA.

<u>**Table S1:**</u> *Comparative list of the properties and fuel cell performance of the as-prepared sPEEK/Cu-PMA composite membrane with the literature reports*

		Filler		Conductivity (a) conditions		Pt- catalyst	Fuel cell performance		Fuel cell		
S.			Conductivity (mS/cm)				Current	Maximum	performance @		Ref.
No	Membrane	loading (%)		Temp.	DIRA	loading	density $(m\Lambda/cm^2)$	power	condition		
		(/0)		(°C)	(°C) RH%.	(mg/cm ²)	@ 0.6 V	(mW/cm ²)	Temp. (°C)	RH%.	
1.	sPEEK		100.5	90	98	0.5	488.57	404.11	60	90	This work
2.	sPEEK/Cu-PMA-0.25	0.25	124.6	00	08	0.5	660 3	476 17	60	00	This
2	wt.%	0.23	124.0	90	90	0.3	000.5	4/0.1/	00	90	work
3.	wt.%	0.50	161.4	90	98	0.5	960.14	748	60	90	i nis work
4.	sPEEK/Cu-PMA-0.75 wt.%	0.75	137.8	90	98	0.5	564.5	427.61	60	90	This work
5.	sPEEK/Cu-PMA- 1wt.%	1	131.9	90	98	0.5	564.6	446.02	60	90	This work
6.	Nafion 212		101.20	90	98	0.5	1203	906.56	60	90	This work
7.	10CE/sPEEK	10	242	80	100	0.3	790	474	80	100	[1]
8.	sPEEK/TpPa-SO ₃ H- 20	20	443.6	60	95						[2]
9.	SP-BCZO-7.5	7.5	30	90		0.5		574	60	100	[3]
10.	sPEEK/ZMix	1	29	100							[4]
11.	PA-C-sPEEK-Im-20	20	39	130	30	0.7	600 ^{\$}	209	130	30	[5]
12.	sPEEK/sGNR (0.1wt. %)	0.1	63.45	60	100	0.5	840	660	60	100	[6]
13.	Nafion 212		76.34	60	100	0.5	1132	900	60	100	[6]
14.	sPEEK/n-BuOH		314	80	90						[7]
15.	sPEEK/PCAS-15	15	38	80	100						[8]
16.	sPEEK/SSLM 5%	5	184	90	95						[9]
17.	sPEEK/2-AGO	2	11.32	120	20						[10]
18.	sPEEK/DGO-5	5	3	120	20	0.25	698.6 ^{\$}	162.1	120	#	[11]
19.	sPEEK/TPA		95	100	90						[12]
20.	sPEEK/WO ₃	50	19	100	100						[13]
21.	sPEEK/sCNT	5	124	90	100						[14]
22.	sPEEK/PVA@GO- NF10	10	70	90	100						[15]
23.	sPEEK/PSSA-CNT		87	80	95						[16]
24.	sPPEK/SGNF	0.5	104	80	95						[17]
25.	sPEEK/PIL/PA		45	160							[18]
26.	sPEEK/SGO	5	55	80	30						[19]
27.	sPEEK/FPAPB/Fe ₃ O4- FGO	5	11.13	120	20						[20]
28.	sPEEK/CeO ₂ -ATiO ₂	2	17.06	60	20	0.3	371	117	60	100	[21]
29.	sPEEK/QNPAES-6 wt.%	6	30.4	90	20	0.3	1180	560	60	100	[22]

[§] Maximum current density at Maximum Power Density, #Anhydrous conditions,

References:

- [1] A. Sahin, H. M. Tasdemir and I. Ar, *Ionics*, 2019, **25**, 5163–5175.
- [2] X. Meng, Y. Lv, L. Ding, L. Peng, Q. Peng, C. Cong, H. Ye and Q. Zhou, *Nanomaterials*, 2022, **12**, 3518.
- [3] G. Sivasubramanian, S. A. G. Thangavelu, B. M. Mahimai, K. Hariharasubramanian and P. Deivanayagam, *J Mater Sci: Mater Electron*, 2021, **33**, 8626–8634.
- [4] A. Barjola, J. Escorihuela, A. Andrio, E. Giménez and V. Compañ, *Nanomaterials*, 2018, 8, 1042.
- [5] J. Jiang, X. Zhu, H. Qian, J. Xu, Z. Yue, Z. Zou and H. Yang, *Sustain. Energy Fuels*, 2019, **3**, 2426–2434.
- [6] A. Shukla, S. D. Bhat and V. K. Pillai, J. Memb. Sci., 2016, 520, 657–670.
- [7] R. Wang, X. Wu, X. Yan, G. He and Z. Hu, J. Memb. Sci., 2015, 479, 46–54.
- [8] J. Wang, S. Jiang, H. Zhang, W. Lv, X. Yang and Z. Jiang, J. Memb. Sci., 2010, 364, 253– 262.
- [9] C. Simari, A. Enotiadis and I. Nicotera, *Membranes*, 2020, 10, 87.
- [10] S. Qu, C. Zhang, M. Li, Y. Zhang, L. Chen, Y. Yang, B. Kang, Y. Wang, J. Duan and W. Wang, *Korean J. Chem. Eng.*, 2019, **36**, 2125–2132.
- [11] Y. He, J. Wang, H. Zhang, T. Zhang, B. Zhang, S. Cao and J. Liu, J. Mater. Chem. A, 2014, 2, 9548.
- [12] S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver and S. Kaliaguine, J. Memb. Sci., 2000, 173, 17–34.
- [13] B. Mecheri, A. D'Epifanio, M. L. Di Vona, E. Traversa, S. Licoccia and M. Miyayama, J. Electrochem. Soc., 2006, 153, A463.
- [14] S. Gahlot and V. Kulshrestha, ACS Appl. Mater. Interfaces, 2015, 7, 264-272.
- [15] J. L. Reyes-Rodriguez, J. Escorihuela, A. García-Bernabé, E. Giménez, O. Solorza-Feria and V. Compañ, RSC Adv., 2017, 7, 53481-53491.
- [16] G. Rambabu and S. D. Bhat, Carbon-Polymer Nanocomposite Membranes as Electrolytes for Direct Methanol Fuel Cells. In *Membrane Technology*, S. Sridhar, ed. Taylor and Francis (CrC press), Boca Raton, FL, USA, 2014, pp. 299–316.
- [17] G. Rambabu, S. Sasikala and S. D. Bhat, RSC Adv., 2016, 6, 107507-107518.
- [18] Q. Che and J. Yue, *RSC Adv.*, 2016, **6**, 111729-111738.
- [19] R. Kumar, M. Mamlouk and K. Scott, RSC Adv., 2014, 4, 617-623.
- [20] M. Vinothkannan, A. R. Kim, G. G. Kumar, J. M. Yoon and D. J. Yoo, *RSC Adv.*, 2017, 7, 39034.

- [21] H. Ranganathan, M. Vinothkannan, A. R. Kim, V. Subramanian, M. S. Oh and D. J. Yoo, *Int J Energy Res.*, 2022, **46**, 9041-9057.
- [22] A. R. Kim, M. B. Poudel, J. Y. Chu, M. Vinothkannan, R. S. Kumar, N. Logeshwaran, G. H. Park, M. K. Han and D. J. Yoo, *Compos B: Eng.*, 2023, 254, 110558.