Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Facile fabrication of NiCo-LDH on activated rice husk carbon for high-performance all-solid-state asymmetric supercapacitors

Hexiang Hu^a, Kaidi Li^a, Xuesong Li^a, Liying Wang^a, Xijia Yang^{a*}, and Qixian Zhang^{b,c,d*}

^a Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China

^b School of Materials Science and Engineering, Shanghai University, Shanghai 200436, PR China

^c Shaoxing Institute of Technology, Shanghai University, Shaoxing 312000, PR China

^d Zhejiang Institute of Advanced Materials, Shanghai University, Jiashan 314113, PR China

E-mail: yangxijia@ccut.edu.cn; qxzhang@ciac.ac.cn

Fax: +86-0431-85716426; Tel: +86-0431-85716421

* To whom all correspondence should be addressed.

Fig. S1. Photographs of RHC electrode material: (a) before carbonization;

(b) after carbonization.

Fig. S2. (a) Nitrogen adsorption and desorption isotherms of NiCo-LDH@RHC; (b) the corresponding pore size distribution plots.

Fig. S3. SEM images of the Fe_2O_3/CC anode material at different

magnifications.

Fig. S4. Specific capacitance of RHC,NiCo-LDH and NiCo-LDH@RHC

on NF at 5 mA cm⁻².

Fig. S5. (a) CV and (b) GCD curves of RHC.

Fig. S6. (a) CV and (b) GCD curves of NiCo-LDH.

Fig. S7. Specific capacitance of NiCo-LDH@RHC on NF at different

current densities.

Fig. S8. Equivalent circuit diagram for fitting the EIS curve.

Fig. S9. The capacitive contribution of NiCo-LDH@RHC at different scan speeds: (a) 2 mVs⁻¹; (b) 4 mV s⁻¹; (c) 6 mV s⁻¹; (d) 8 mV s⁻¹; (e) 10 mV s⁻¹.

Fig. S10. SEM image of NiCo-LDH@RHC on NF after 5000 cycles.

Fig. S11. Fe₂O₃ anode: (a) CV curves at varying scan rates in the potential window of -1.0 - 0.0 V; (b) GCD curves at varying current densities in the potential window of -1.0 - 0.0 V.

Fig. S12. The rate capability of the all-solid-state ASC

Electrode	Electrolyte	Currentdensity (mAcm ⁻²)	Capacitance (mF cm ⁻²)	Ref.
NiCo ₂ O ₄ @Ni(OH) ₂ /NF	1М КОН	1	3500	[S1]
Ni ₃ S ₂ @Ni(OH) ₂ /NF	6М КОН	1	3550	[S2]
NiCo ₂ O ₄ @MnO ₂ /CC	2М КОН	2	3810	[S3]
NiCo ₂ O ₄ @MnMoO ₄ /NF	ЗМ КОН	2	4240.5	[S4]
Ni(OH) ₂ @CoMoO ₄ /NF	2M NaOH	8	5230	[85]
NiCo ₂ O ₄ @NiCo-LDH/ACC	6М КОН	2	6090	[S6]
NiCo-LDH@RHC/NF	ЗМ КОН	2	8542.5	This work

Table S1.Comparisonof the Cs for the electrodes with the similar active

Table S2. Performance comparison of our ASC with other ASCs with the

Materials	Energy density (µWh cm ⁻²)	Power density (mW cm ⁻²)	Ref.
NiCo ₂ O ₄ NG/CF//C	9.46	0.608	[87]
NiO/Ni(OH) ₂ /PEDOT//C	11	0.33	[S8]
MnO ₂ /CNT//MnO ₂ /CNT	18	0.72	[89]
NiCo-LDH@RHC/ NF//Fe ₂ O ₃	61.44	3.99	This work

similar active materials.

References

- [S1] Y. Fan, S. Liu, X. Han, R. Xiang, Y. Gong, T. Wang, Y. Jing, S. Maruyama, Q. Zhang, Y. J. A. A. E. M. Zhao, ACS Applied Energy Materials, 2020, 3, 7580-7587.
- [S2] J. Lin, X. Zheng, Y. Wang, H. Liang, H. Jia, S. Chen, J. Qi, J. Cao, W. Fei, J. Feng, *Inorganic Chemistry Frontiers*, 2018, 5, 1985-1991.
- [S3] J. Zhang, Y. Wang, C. Yu, T. Zhu, Y. Li, J. Cui, J. Wu, X. Shu, Y. Qin, J. Sun, J. Yan, Y. Zhang, Y. Wu, *Journal of Materials Science*, 2019, 55, 688-700.
- [S4] Y. Yuan, W. Wang, J. Yang, H. Tang, Z. Ye, Y. Zeng, J. Lu, *Langmuir*, 2017, 33, 10446-10454.
- [S5] X. Li, S.-Y. Lin, M. Zhang, G. Jiang, H. Gao, Nano, 2016, 11.
- [S6] S. Li, Y. Luo, C. Wang, M. Wu, Y. Xue, J. Yang, L. Li, Journal of Alloys and Compounds, 2022, 920.

- [S7] S. T. Senthilkumar, N. Fu, Y. Liu, Y. Wang, L. Zhou, H. Huang, *Electrochimica Acta*, 2016, 211, 411-419.
- [S8] H. Yang, H. Xu, M. Li, L. Zhang, Y. Huang, X. Hu, ACS Appl Mater Interfaces, 2016, 8, 1774-1779.
- [S9] B. Patil, S. Ahn, C. Park, H. Song, Y. Jeong, H. Ahn, *Energy*, 2018, 142, 608-616.