Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Efficient synthesis of functionalized trifluoromethyl cyclopropanes via

cyclopropanation of α -trifluoromethyl styrenes with chloroacetonitrile and ethyl

chloroacetate

Yupian Deng,^a Ying Liu,^a Jingjing He,^a Pai Zheng,^a Zhudi Sun,^a and Song Cao*^{a,b}

^aShanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and

Technology (ECUST), Shanghai 200237, China

^bKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China

*Corresponding author. E-mail address: scao@ecust.edu.cn

Table of contents

1.	General information
2.	α-(Trifluoromethyl)styrenes (1a–p) used in this reactionS2
3.	2-Trifluoromethyl-1,3-conjugated enynes (1q-s) used in this reaction
4.	Substrates 2a–f used in this reaction
5.	General procedure for the synthesis of the target compounds 3aa-sa, 3ac, 3hc, 3nc······S3
6.	General procedure for the synthesis of the target compounds 3ad-af', 3qc-sc
7.	¹ H- ¹⁹ F HOESY experiments······S3
8.	Analytical data of the target compoundsS5
9.	ReferencesS18
10.	¹ H, ¹³ C, ¹⁹ F NMR and HRMS spectra of the target compoundsS19
11.	GC-MS spectra of compounds <i>cis</i> -3ha, <i>cis</i> -3ia, <i>cis</i> -3ja, <i>cis</i> -3ka, <i>cis</i> -3la, <i>cis</i> -3oa and 3nc-isomer 2

1. General information

All reagents were of analytical grade, and obtained from commercial suppliers and used without further purification. Melting points were measured in an open capillary using EZ-Melt automated melting point apparatus and were uncorrected. ¹H NMR and ¹³C NMR spectra were recorded on a 400 spectrometer (400 MHz for ¹H and 100 MHz for ¹³C, respectively) using TMS as an internal standard. The ¹⁹F NMR spectra were obtained on a 400 spectrometer (376 MHz) or 600 spectrometer (564 MHz) with CF₃COOH as an internal standard. CDCl₃ was used as the NMR solvents. High resolution mass spectra (HRMS) were acquired in the EI or ESI mode using a TOF mass analyzer. The GC and GC-MS were recorded on HP 5973 MSD with 6890 GC. Silica gel (300–400 mesh size) was used for column chromatography. TLC analysis of reaction mixtures was performed using silica gel plates.

2. α-(Trifluoromethyl)styrenes (1a-p)

The α -(trifluoromethyl)styrenes (1a-p) were prepared according to the reported procedure.¹⁻⁵

3. 2-Trifluoromethyl-1,3-conjugated enynes (1q-s) used in this reaction

The enynes 1q-s were prepared according to the reported procedure.⁶

4. Substrates 2a–f used in this reaction

The starting materials **2a–f** were obtained from commercial suppliers.

5. General procedure for the synthesis of the target compounds 3aa–sa, 3ac, 3hc, 3nc

To a glass tube charged with a stirring bar were added NaOtBu (134.4 mg, 1.4 mmol, 2.0 equiv), ClCH₂CN (**2a**) or 2-chloropropanenitrile (**2c**) (0.84 mmol, 1.2 equiv), α -(trifluoromethyl)styrenes or 2-trifluoromethyl-1,3-conjugated enynes **1a–s** (0.7 mmol, 1.0 equiv), and DMF (3 mL) under argon atmosphere. The tube was flushed with argon three times and sealed with a septum. And then the reaction mixture was stirred at 60 °C for 12 h or 18 h (monitored by TLC and GC/MS). After completion of the reaction, the reaction mixture was quenched with saturated aqueous solution of NH₄Cl (30 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was separated and dried over Na₂SO₄, filtered and concentrated in vacuo. The resultant residue was purified by column chromatography on silica gel using *n*-hexane/ ethyl acetate (20/1~2/1) as eluent to afford the pure target compounds **3aa–sa**, **3ac**, **3hc**, **3nc**.

6. General procedure for the synthesis of the target compounds 3ad-af', 3qc-sc

To a glass tube charged with a stirring bar were added LiHMDS (1.4 mL, 1.4 mmol, 2.0 equiv, 1 M in THF), 2d– f (0.84 mmol, 1.2 equiv), α -(trifluoromethyl)styrenes 1a, 1b, 1n or 2-trifluoromethyl-1,3-conjugated enynes 1q–s (0.7 mmol, 1.0 equiv), and DMF (3 mL) under argon atmosphere. The tube was flushed with argon three times and sealed with a rubber septum. And then the reaction mixture was stirred at 80 °C under argon atmosphere for 12 h or 18 h (monitored by TLC and GC/MS). After completion of the reaction, the reaction mixture was quenched with saturated aqueous solution of NH₄Cl (30 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was separated and dried over Na₂SO₄, filtered and concentrated in vacuo. The resultant residue was purified by column chromatography on silica gel using *n*-hexane/ ethyl acetate (20/1~2/1) as eluent to afford the pure target compounds **3ad–af', 3qc–sc**.

7. ¹H-¹⁹F HOESY experiments

The cyclopropanes *tran-3da* and *cis-3da* were analyzed to find their relative stereochemistry via ${}^{1}H{}^{-19}F$ HOESY experiments. HOSEY spectra were recorded by a Bruker AMX-400 spectrometer with a { ${}^{19}F$, ${}^{1}H$ } probe. The spectra were recorded in CDCl₃ at 295.8 K. A spectral width of 90909.1 Hz in f₂ dimension (${}^{19}F$) and 5197.5 Hz in f₁ dimension (${}^{1}H$) were used. 8 scans were collected for each of the 8 increments, with a relaxation of 1.0 s. The analysis of ${}^{1}H{}^{-19}F$ HOESY spectrum of *trans-3da* revealed that there are strong correlations between the CF₃ group

at -70.8 ppm and two cyclopropane protons at 2.32 (Hc) and 1.97 (Ha) ppm, indicating that the CF₃ group and two protons (Hc and Ha) lie on the same face of the cyclopropyl ring. Weak NOE was observed for the cyclopropane proton at 1.75 (Hb) ppm, suggesting that Hb proton lies on the face opposite to CF₃ group.⁷

Figure S1. Part of ¹H NMR spectra for *trans*-3da and *cis*-3da

Figure S3. ¹H-¹⁹F HOESY spectra for *trans*-3da and *cis*-3da

8. Analytical data of the target compounds

trans-2-([1,1'-Biphenyl]-4-yl)-2-(trifluoromethyl)cyclopropane-1-carbonitrile (*trans*-3aa). Yield 68% (136.6 mg), yellow solid, m.p.: 111.3–113.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.66–7.64 (m, 2H), 7.60–7.55 (m, 4H), 7.46–7.42 (m, 2H), 7.38–7.35 (m, 1H), 2.31 (dd, *J* = 9.6 Hz, 6.0 Hz, 1H), 1.95 (dd, *J* = 9.6 Hz, 6.0 Hz, 1H), 1.76 (td, *J* = 6.0 Hz, 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 141.9, 139.1, 130.7, 127.9, 127.5, 127.4, 127.1, 126.8, 126.7, 126.2, 123.2 (q, ¹*J*_{CF} = 273.6 Hz), 116.0, 33.5 (q, ²*J*_{CF} = 34.2 Hz), 15.2 (q, ³*J*_{CF} = 1.8 Hz), 7.3 (q, ³*J*_{CF} = 3.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –71.0 (s, 3F); HRMS (EI): calcd for C₁₇H₁₂F₃N [M]⁺: 287.0922, found: 287.0919.

cis-2-([1,1'-Biphenyl]-4-yl)-2-(trifluoromethyl)cyclopropane-1-carbonitrile (*cis*-3aa). Yield 15% (30.1 mg), yellow solid, m.p.: 133.3–137.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.56 (m, 4H), 7.51–7.44 (m, 4H), 7.40–7.37 (m, 1H), 2.10–2.03 (m, 2H), 1.80–1.74 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 142.8, 140.0, 131.7, 131.0, 129.0, 128.0, 127.9, 127.7, 127.2, 124.1 (q, ¹*J*_{CF} = 274.0 Hz), 116.6, 35.5 (q, ²*J*_{CF} = 35.9 Hz), 16.6 (q, ³*J*_{CF} = 2.1 Hz), 9.0 (q, ³*J*_{CF} = 1.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –67.3 (s, 3F).

trans-2-(Naphthalen-2-yl)-2-(trifluoromethyl)cyclopropane-1-carbonitrile (*trans*-3ba). Yield 73% (133.4 mg), white solid, m.p.: 96.8–99.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.91–7.84 (m, 3H), 7.58–7.50 (m, 3H), 2.32 (dd, *J* = 9.6 Hz, 6.4 Hz, 1H), 1.96 (dd, *J* = 9.6 Hz, 6.0 Hz, 1H), 1.83 (td, *J* = 5.9 Hz, 1.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 133.9, 133.1, 131.7, 129.0, 128.3, 127.9, 127.8, 127.4, 127.2, 126.8, 124.4 (q, ¹*J*_{CF} = 273.7 Hz), 117.1, 35.0 (q, ²*J*_{CF} = 34.0 Hz), 16.4 (q, ³*J*_{CF} = 1.8 Hz), 8.5 (q, ³*J*_{CF} = 3.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -70.8 (s, 3F); HRMS (EI): calcd for C₁₅H₁₀F₃N [M]⁺: 261.0765, found: 261.0768.

cis-2-(Naphthalen-2-yl)-2-(trifluoromethyl)cyclopropane-1-carbonitrile (*cis*-3ba). Yield 13% (23.8 mg), white solid, m.p.: 104.8–106.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.91–7.85 (m, 4H), 7.56–7.50 (m, 3H), 2.14–2.09 (m, 2H), 1.86–1.81 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 133.6, 132.9, 130.6, 130.1, 129.0. 128.1, 127.8, 127.4, 127.2, 127.1, 124.2 (q, ¹*J*_{CF} = 274.1 Hz), 116.7, 35.9 (q, ²*J*_{CF} = 34.3 Hz), 16.7 (q, ³*J*_{CF} = 2.2 Hz), 9.1 (d, ³*J*_{CF} = 0.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –67.1 (s, 3F).

trans-2-(4-Chlorophenyl)-2-(trifluoromethyl)cyclopropane-1-carbonitrile (*trans*-3ca). Yield 68% (116.6 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.41 (m, 4H), 2.30 (dd, J = 8.8 Hz, 6.4 Hz, 1H), 1.94 (dd, J = 8.8 Hz, 6.4 Hz, 1H), 1.70 (t, J = 5.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 135.3, 131.7, 128.3, 127.3, 127.2, 122.9 (q, ¹ J_{CF} = 273.6 Hz), 115.7, 33.2 (q, ² J_{CF} = 34.3 Hz), 15.3 (q, ³ J_{CF} = 1.9 Hz), 7.4 (q, ³ J_{CF} = 3.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –71.2 (s, 3F); HRMS (EI): calcd for C₁₁H₇ClF₃N [M]⁺: 245.0219, found: 245.0218.

cis-2-(4-Chlorophenyl)-2-(trifluoromethyl)cyclopropane-1-carbonitrile (*cis*-3ca). Yield 18% (30.9 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (s, 4H), 2.08–1.98 (m, 2H), 1.72–1.69 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 135.0, 130.9, 130.2, 128.9, 128.6, 128.3, 122.8 (q, ¹J_{CF} = 274.0 Hz), 115.2, 34.1 (q, ²J_{CF} = 34.1 Hz), 15.5 (q, ³J_{CF} = 2.2 Hz), 8.0 (d, ³J_{CF} = 1.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –67.5 (s, 3F).

trans-2-(3,4-Dichlorophenyl)-2-(trifluoromethyl)cyclopropane-1-carbonitrile (*trans*-3da). Yield 60% (117.2 mg), yellow solid, m.p.: 83.8–84.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (s, 1H), 7.40 (s, 2H), 2.32 (dd, J = 9.6 Hz, 6.4 Hz, 1H), 1.97 (dd, J = 9.6 Hz, 6.0 Hz, 1H), 1.75 (td, J = 6.2 Hz, 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 135.7, 132.8, 130.6, 130.0, 124.1 (q, ¹ $J_{CF} = 273.9$ Hz), 116.3, 34.2 (q, ² $J_{CF} = 34.6$ Hz), 16.2 (q, ³ $J_{CF} = 1.8$ Hz), 8.6 (q, ³ $J_{CF} = 3.1$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –70.8 (s, 3F); HRMS (EI): calcd for C₁₁H₆Cl₂F₃N [M]⁺: 278.9829, found: 278.9826.

cis-2-(3,4-Dichlorophenyl)-2-(trifluoromethyl)cyclopropane-1-carbonitrile (*cis*-3da). Yield 20% (39.1 mg), yellow solid, m.p.: 125.2–126.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (s, 1H), 7.34 (s, 2H), 2.10–2.02 (m, 2H), 1.76–1.72 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 134.6, 129.2, 128.9, 128.4, 128.1, 127.4, 122.5 (q, ¹*J*_{CF} = 274.4 Hz), 114.7, 34.0 (q, ²*J*_{CF} = 34.5 Hz), 15.4 (q, ³*J*_{CF} = 2.0 Hz), 8.1 (q, ³*J*_{CF} = 1.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –67.2 (s, 3F).

trans-2-(4-(Trifluoromethoxy)phenyl)-2-(trifluoromethyl)cyclopropane-1-carbonitrile (*trans*-3ea). Yield 78% (161.1 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 8.0 Hz, 2H), 2.36 (dd, J = 9.6 Hz, 6.0 Hz, 1H), 2.02 (dd, J = 9.6 Hz, 6.0 Hz, 1H), 1.77 (t, J = 5.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 134.9, 132.3, 131.3, 126.6 (q, ¹ $J_{CF} = 274.1$ Hz), 121.6, 121.4, 120.4 (q, ¹ $J_{CF} = 273.5$ Hz), 116.2, 35.1 (q, ² $J_{CF} = 34.5$ Hz), 16.6 (q, ³ $J_{CF} = 2.2$ Hz), 9.1 (d, ³ $J_{CF} = 1.0$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -57.8 (s, 3F), -71.2 (s, 3F); HRMS (EI): calcd for C₁₂H₇F₆NO [M]⁺: 295.0432, found: 295.0429.

cis-2-(4-(Trifluoromethoxy)phenyl)-2-(trifluoromethyl)cyclopropane-1-carbonitrile (*cis*-3ea). Yield 13% (26.8 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.8 Hz, 2H), 7.25 (d, *J* = 9.2 Hz, 2H), 2.10–2.00 (m, 2H), 1.75–1.71 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.1, 131.3, 130.3, 122.8 (q, ¹*J*_{CF} = 273.8 Hz), 120.6, 120.3, 119.7 (q, ¹*J*_{CF} = 274.2 Hz), 118.0, 115.2, 34.0 (q, ²*J*_{CF} = 33.0 Hz), 15.5 (q, ³*J*_{CF} = 2.4 Hz), 8.0 (q, ³*J*_{CF} = 1.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –57.9 (s, 3F), –67.5 (s, 3F).

trans-2-(Trifluoromethyl)-2-(4-(trifluoromethyl)phenyl)cyclopropane-1-carbonitrile (*trans*-3fa). Yield 73% (142.6 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 8.0 Hz, 2H), 2.34 (dd, J = 9.6 Hz, 6.4 Hz, 1H), 1.98 (dd, J = 9.6 Hz, 6.0 Hz, 1H), 1.75 (td, J = 6.2 Hz, 1.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 132.9, 131.4 (q, ² $_{JCF}$ = 32.6 Hz), 130.4, 125.2 (q, ³ $_{JCF}$ = 3.5 Hz), 123.1 (q, ¹ $_{JCF}$ = 273.6 Hz), 122.9 (q, ¹ $_{JCF}$

= 270.7 Hz), 115.8, 33.7 (q, ${}^{2}J_{CF}$ = 34.4 Hz), 15.4 (q, ${}^{3}J_{CF}$ = 1.5 Hz), 7.5 (q, ${}^{3}J_{CF}$ = 3.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –63.1 (s, 3F), –71.1 (s, 3F); HRMS (EI): calcd for C₁₂H₇F₆N [M]⁺: 279.0483, found: 279.0480.

cis-2-(Trifluoromethyl)-2-(4-(trifluoromethyl)phenyl)cyclopropane-1-carbonitrile (*cis*-3fa). Yield 16% (31.2 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.0 Hz, 2H), 7.59 (d, *J* = 8.0 Hz, 2H), 2.11–2.05 (m, 2H), 1.78–1.74 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 135.5, 131.0 (q, ²*J*_{CF} = 32.7 Hz), 130.2, 125.0 (q, ³*J*_{CF} = 3.8 Hz), 122.7 (q, ¹*J*_{CF} = 274.1 Hz), 122.5 (q, ¹*J*_{CF} = 270.7 Hz), 115.1, 34.4 (q, ²*J*_{CF} = 34.2 Hz), 15.4 (q, ³*J*_{CF} = 2.1 Hz), 7.9 (q, ³*J*_{CF} = 1.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –63.0 (s, 3F), –67.3 (s, 3F).

trans-Methyl 4-(2-cyano-1-(trifluoromethyl)cyclopropyl)benzoate (*trans*-3ga). Yield 67% (126.1 mg), yellow solid, m.p.: 109.5–112.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 3.93 (s, 3H), 2.34 (dd, J = 9.6 Hz, 6.4 Hz, 1H), 1.99 (dd, J = 9.6 Hz, 6.0 Hz, 1H), 1.77 (td, J = 6.1 Hz, 1.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 133.3, 130.7, 130.5, 129.2, 127.2, 122.9 (q, ¹ $_{JCF}$ = 273.6 Hz), 115.6, 51.3, 33.6 (q, ² $_{JCF}$ = 34.3 Hz), 15.2 (q, ³ $_{JCF}$ = 1.8 Hz), 7.4 (q, ³ $_{JCF}$ = 3.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -70.9 (s, 3F); HRMS (EI): calcd for C₁₃H₁₀F₃NO₂ [M]⁺: 269.0664, found: 269.0667.

F₃C CN MeOOC cis-3ga

cis-Methyl 4-(2-cyano-1-(trifluoromethyl)cyclopropyl)benzoate (*cis*-3ga). Yield 15% (28.2 mg), yellow solid, m.p.: 129.7–132.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.4 Hz, 2H), 7.53 (d, *J* = 8.0 Hz, 2H), 3.93 (s, 3H), 2.11–2.02 (m, 2H), 1.78–1.74 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 136.3, 130.5, 129.7, 129.1, 122.7 (q, ¹*J*_{CF} = 274.0 Hz), 115.1, 51.4, 34.5 (q, ²*J*_{CF} = 33.9 Hz), 15.4 (q, ³*J*_{CF} = 2.1 Hz), 8.0 (q, ³*J*_{CF} = 1.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –67.2 (s, 3F).

trans-Methyl 3-(2-cyano-1-(trifluoromethyl)cyclopropyl)benzoate (trans-3ha). Yield 64% (120.5 mg), yellow

solid, m.p.: 72.6–73.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 8.14 (d, *J* = 7.6 Hz, 1H), 7.74 (d, *J* = 7.6 Hz, 1H), 7.55 (t, *J* = 7.8 Hz, 1H), 3.95 (s, 3H), 2.35 (dd, *J* = 9.6 Hz, 6.0 Hz, 1H), 2.00 (dd, *J* = 9.6 Hz, 6.0 Hz, 1H), 1.80 (td, *J* = 6.0 Hz, 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 135.9, 132.6, 131.3, 130.3, 129.3, 128.7, 124.1 (q, ¹*J*_{CF} = 273.6 Hz), 116.8, 52.5, 34.6 (q, ²*J*_{CF} = 34.4 Hz), 16.4 (q, ³*J*_{CF} = 1.4 Hz), 8.5 (q, ³*J*_{CF} = 3.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –71.0 (s, 3F); HRMS (ESI): calcd for C₁₃H₁₀F₃NO₂Na [M+Na]⁺: 292.0562, found: 292.0563.

trans-4-(2-Cyano-1-(trifluoromethyl)cyclopropyl)benzonitrile (*trans*-3ia). Yield 72% (118.9 mg), white oil; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.6 Hz, 2H), 7.65 (d, J = 8.0 Hz, 2H), 2.38 (dd, J = 9.6Hz, 6.0 Hz, 1H), 2.02 (dd, J = 9.2 Hz, 6.0 Hz, 1H), 1.77 (t, J = 6.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 133.7, 131.8, 131.4, 122.7 (q, ¹ J_{CF} = 273.8 Hz), 116.9, 115.4, 113.2, 33.6 (q, ² J_{CF} = 34.5 Hz), 15.2 (q, ³ J_{CF} = 1.9 Hz), 7.5 (q, ³ J_{CF} = 3.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -70.7 (s, 3F); HRMS (EI): calcd for C₁₂H₇F₃N₂ [M]⁺: 236.0561, found: 236.0559.

trans-3-(2-Cyano-1-(trifluoromethyl)cyclopropyl)benzonitrile (*trans*-3ja). Yield 75% (123.9 mg), white oil; ¹H NMR (400 MHz, CDCl₃) δ 7.80–7.76 (m, 3H), 7.61 (t, J = 7.8 Hz, 1H), 2.38 (dd, J = 9.6 Hz, 6.4 Hz, 1H), 2.03 (dd, J = 9.6 Hz, 6.4 Hz, 1H), 1.77 (td, J = 6.1 Hz, 1.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 135.9, 135.1, 133.7, 131.5, 130.1, 123.7 (q, ¹ $_{CF}$ = 273.8 Hz), 117.8, 116.4, 133.7, 34.3 (q, ² $_{CF}$ = 34.6 Hz), 16.2 (d, ³ $_{JCF}$ = 1.7 Hz), 8.5 (d, ³ $_{JCF}$ = 3.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –70.9 (s, 3F); HRMS (EI): calcd for C₁₂H₇F₃N₂ [M]⁺: 236.0561, found: 236.0558.

trans-2-(4-(Methylthio)phenyl)-2-(trifluoromethyl)cyclopropane-1-carbonitrile (*trans*-3ka). Yield 75% (134.9 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 7.6 Hz, 2H), 7.28 (d, J = 6.8 Hz, 2H), 2.47 (s, 3H), 2.27–2.20 (m, 1H), 1.90–1.83 (m, 1H), 1.67 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.4, 130.6, 127.2, 126.6, 125.1, 124.9, 123.1 (q, ¹ J_{CF} = 273.6 Hz), 116.0, 33.2 (q, ² J_{CF} = 34.2 Hz), 15.2 (q, ³ J_{CF} = 1.8 Hz), 14.1, 7.3 (q, ³ J_{CF} = 3.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –71.2 (s, 3F); HRMS (EI): calcd for C₁₂H₁₀F₃NS [M]⁺: 257.0486, found: 257.0483.

trans-2-(4-(Methylsulfonyl)phenyl)-2-(trifluoromethyl)cyclopropane-1-carbonitrile (*trans*-3la). Yield 76% (153.7 mg), yellow solid, m.p.: 132.8–133.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H), 3.09 (s, 3H), 2.40 (dd, J = 9.6 Hz, 6.4 Hz, 1H), 2.05 (dd, J = 9.6 Hz, 6.0 Hz, 1H), 1.79 (td, J = 6.0 Hz, 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 135.6, 132.7, 128.2, 126.6, 125.1, 123.7 (q, ¹ $_{CF}$ = 274.0 Hz), 116.5, 44.4, 34.6 (q, ² $_{JCF}$ = 34.3 Hz), 16.4 (q, ³ $_{JCF}$ = 1.8 Hz), 8.5 (q, ³ $_{JCF}$ = 3.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –70.7 (s, 3F); HRMS (EI): calcd for C₁₂H₁₀F₃NO₂S [M]⁺: 289.0384, found: 289.0381.

trans-2-(3-Nitrophenyl)-2-(trifluoromethyl)cyclopropane-1-carbonitrile (*trans*-3ma). Yield 67% (120.1 mg), white solid, m.p.: 68.3–70.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.40–8.33 (m, 2H), 7.90 (d, J = 7.6 Hz, 1H), 7.68 (t, J = 8.0 Hz, 1H), 2.43 (dd, J = 9.6 Hz, 6.0 Hz, 1H), 2.07 (dd, J = 9.6 Hz, 6.4 Hz, 1H), 1.85 (td, J = 6.2 Hz, 1.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 147.5, 136.5, 130.8, 129.3, 125.5, 124.1, 122.7 (q, ¹ $_{JCF}$ = 273.9 Hz), 115.4, 33.3 (q, ² $_{JCF}$ = 34.8 Hz), 15.3, 7.6 (q, ³ $_{JCF}$ = 3.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –70.8 (s, 3F); HRMS (EI): calcd for C₁₁H₇F₃N₂O₂ [M]⁺: 256.0460, found: 256.0458.

cis-2-(3-Nitrophenyl)-2-(trifluoromethyl)cyclopropane-1-carbonitrile (*cis*-3ma). Yield 24% (43.0 mg), white solid, m.p.: 108.3–110.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.24–8.21 (m, 2H), 7.76 (d, *J* = 7.6 Hz, 1H), 7.57 (t, *J* = 7.8 Hz, 1H), 2.12–2.03 (m, 2H), 1.78–1.74 (m, 1H) ; ¹³C NMR (125 MHz, CDCl₃) δ 147.3, 135.7, 133.6, 129.3, 124.7, 123.8, 122.6 (q, ¹*J*_{CF} = 274.4 Hz), 114.7, 34.1 (q, ²*J*_{CF} = 34.2 Hz), 15.5, 8.2; ¹⁹F NMR (376 MHz, CDCl₃) δ –67.2 (s, 3F).

trans-2-(6-Chloropyridin-3-yl)-2-(trifluoromethyl)cyclopropane-1-carbonitrile (*trans*-3na). Yield 68% (117.1 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, J = 2.4 Hz, 1H), 7.83 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 7.46 (d,

J = 8.4 Hz, 1H), 2.39 (dd, J = 9.6 Hz, 6.0 Hz, 1H), 2.03 (dd, J = 9.6 Hz, 6.0 Hz, 1H), 1.78 (td, J = 6.2 Hz, 0.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 152.3, 141.7, 125.1, 124.8, 123.6 (q, ¹ $J_{CF} = 273.7$ Hz), 116.3, 32.1 (q, ² $J_{CF} = 35.0$ Hz), 16.0 (q, ³ $J_{CF} = 1.8$ Hz), 8.2 (q, ³ $J_{CF} = 3.1$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -71.0 (s, 3F); HRMS (EI): calcd for C₁₀H₆ClF₃N₂ [M]⁺: 246.0172, found: 246.0170.

cis-2-(6-Chloropyridin-3-yl)-2-(trifluoromethyl)cyclopropane-1-carbonitrile (*cis*-3na). Yield 17% (29.3 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 2.0 Hz, 1H), 7.76 (dd, *J* = 8.4 Hz, 2.4 Hz, 1H), 7.40 (d, *J* = 8.4 Hz, 1H), 2.16–2.04 (m, 2H), 1.79–1.75 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 151.6, 141.0, 127.9, 124.8, 123.6 (q, ¹*J*_{CF} = 274.2 Hz), 115.8, 33.0 (q, ²*J*_{CF} = 34.8 Hz), 16.2 (q, ³*J*_{CF} = 1.8 Hz), 9.0; ¹⁹F NMR (376 MHz, CDCl₃) δ –67.4 (s, 3F).

trans-2-(Quinolin-3-yl)-2-(trifluoromethyl)cyclopropane-1-carbonitrile (*trans*-3oa). Yield 65% (119.2 mg), yellow solid, m.p.: 84.4–85.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.00 (s, 1H), 8.36 (s, 1H), 8.17 (d, *J* = 8.8 Hz, 1H), 7.90 (d, *J* = 8.4 Hz, 1H), 7.81 (t, *J* = 7.6 Hz, 1H), 7.63 (t, *J* = 7.4 Hz, 1H), 2.44 (dd, *J* = 9.6 Hz, 6.0 Hz, 1H), 2.09 (dd, *J* = 9.2 Hz, 6.0 Hz, 1H), 1.88 (td, *J* = 6.2 Hz, 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 147.4, 138.7, 130.0, 128.4, 127.1, 126.6, 126.2, 122.9 (q, ¹*J*_{CF} = 273.8 Hz), 121.9, 115.5, 31.7 (q, ²*J*_{CF} = 34.8 Hz), 15.0 (q, ³*J*_{CF} = 1.6 Hz), 7.2 (q, ³*J*_{CF} = 3.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –70.8 (s, 3F); HRMS (ESI): calcd for C₁₄H₁₀F₃N₂ [M+H]⁺: 263.0796, found: 263.0794.

trans-2-(Thiophen-2-yl)-2-(trifluoromethyl)cyclopropane-1-carbonitrile (*trans*-3pa). Yield 58% (88.5 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 4.4 Hz, 1H), 7.28 (s, 1H), 7.06 (t, J = 4.0 Hz, 1H), 2.33 (dd, J = 8.8 Hz, 6.4 Hz, 1H), 1.97 (dd, J = 8.8 Hz, 6.8 Hz, 1H), 1.88 (t, J = 6.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 130.5, 130.3, 127.2, 126.4, 122.6 (q, ¹ J_{CF} = 273.6 Hz), 115.5, 28.9 (q, ² J_{CF} = 35.8 Hz), 16.6 (q, ³ J_{CF} = 1.9 Hz), 9.4 (q, ³ J_{CF} = 3.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -71.2 (s, 3F); HRMS (ESI): calcd for C₉H₇F₃NS [M+H]⁺: 218.0251, found: 218.0247.

cis-2-(Thiophen-2-yl)-2-(trifluoromethyl)cyclopropane-1-carbonitrile (*cis*-3pa). Yield 19% (29.0 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 4.8 Hz, 1H), 7.18 (d, *J* = 3.2 Hz, 1H), 7.00 (t, *J* = 4.4 Hz, 1H), 2.14–2.08 (m, 2H), 1.88–1.82 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 134.9, 130.2, 127.6, 127.2, 123.5 (q, ¹*J*_{CF} = 274.1 Hz), 115.9, 30.7 (q, ²*J*_{CF} = 35.6 Hz), 18.1 (q, ³*J*_{CF} = 2.2 Hz), 11.0; ¹⁹F NMR (376 MHz, CDCl₃) δ –67.5 (s, 3F).

2-([1,1'-Biphenyl]-4-yl)-1-methyl-2-(trifluoromethyl)cyclopropane-1-carbonitrile (3ac, *trans/cis*=1/1). Yield 79% (166.5 mg), yellow solid, m.p.: 97.3–100.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64–7.58 (m, 4.21H), 7.48–7.44 (m, 3.14H), 7.40–7.36 (m, 2.10H), 2.20 (d, *J* = 6.0 Hz, 1H), 2.04 (s, 0.05H), 1.84 (d, *J* = 1.6 Hz, 0.07H), 1.54–1.51 (m, 1H), 1.24 (s, 0.16H), 1.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 141.4, 138.9, 130.3, 130.0, 128.0, 127.9, 127.8, 127.1, 126.7, 126.6, 126.2, 126.1, 123.3 (q, ¹*J*_{CF} = 274.3 Hz), 118.8, 38.0 (q, ²*J*_{CF} = 32.9 Hz), 21.5 (q, ³*J*_{CF} = 2.6 Hz), 19.0, 12.8; ¹⁹F NMR (376 MHz, CDCl₃) δ –62.0 (s, 0.15F), –65.9 (s, 3F); HRMS (ESI): calcd for C₁₈H₁₄F₃NNa [M+Na]⁺: 324.0976, found: 324.0977.

Methyl 3-(2-cyano-2-methyl-1-(trifluoromethyl)cyclopropyl)benzoate (3hc-*isomer 1*). Yield 40% (79.2mg), yellow solid, m.p.: 117.4–121.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 7.6 Hz, 2H), 7.69 (s, 1H), 7.53 (t, *J* = 7.8 Hz, 1H), 3.94 (s, 3H), 2.02 (dd, *J* = 6.4 Hz, 1.6 Hz, 1H), 1.86 (d, *J* = 6.4 Hz, 1H), 1.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 134.1, 131.8, 130.8, 130.0, 129.8, 128.1, 123.5 (q, ¹*J*_{CF} = 274.3 Hz), 119.0, 51.3, 37.1 (q, ²*J*_{CF} = 33.4 Hz), 22.0 (q, ³*J*_{CF} = 2.0 Hz), 16.6, 15.5 (q, ³*J*_{CF} = 2.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –62.0 (s, 3F); HRMS (ESI): calcd for C₁₄H₁₂F₃NO₂Na [M+Na]⁺: 306.0718, found: 306.0721.

Methyl 3-(2-cyano-2-methyl-1-(trifluoromethyl)cyclopropyl)benzoate (3hc-*isomer 2***).** Yield 40% (79.2 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 7.2 Hz, 2H), 7.53 (t, *J* = 7.6 Hz, 2H), 3.95 (s, 3H), 2.23 (d, *J* = 6.0 Hz, 1H), 1.56 (s, 1H), 1.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 134.3, 130.9, 130.1, 129.7, 129.5,

128.2, 123.1 (q, ${}^{1}J_{CF} = 274.3$ Hz), 118.5, 51.4, 37.9 (q, ${}^{2}J_{CF} = 33.1$ Hz), 21.5 (q, ${}^{3}J_{CF} = 2.2$ Hz), 19.0, 12.8; ${}^{19}F$ NMR (376 MHz, CDCl₃) δ –65.9 (s, 3F).

2-(6-Chloropyridin-3-yl)-1-methyl-2-(trifluoromethyl)cyclopropane-1-carbonitrile (3nc-*isomer 1***).** Yield 40% (72.8 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.69 (s, 1H), 7.43 (d, J = 8.4 Hz, 1H), 2.27 (d, J = 6.4 Hz, 1H), 1.52 (s, 1H), 1.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.0, 150.7, 140.0, 124.3, 123.7, 122.7 (q, ¹ J_{CF} = 274.4 Hz), 117.8, 35.5 (q, ² J_{CF} = 34.7 Hz), 21.2 (q, ³ J_{CF} = 1.6 Hz), 19.1, 12.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -66.0 (s, 3F); HRMS (ESI): calcd for C₁₁H₉ClF₃N₂ [M+H]⁺: 261.0406, found: 261.0404.

3ad-isomer 1

Ethyl 2-([1,1'-biphenyl]-4-yl)-1-methyl-2-(trifluoromethyl)cyclopropane-1-carboxylate (3ad-*isomer 1*). Yield 37% (90.1 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.56–7.51 (m, 4H), 7.44–7.40 (m, 4H), 7.36–7.32 (m, 1H), 3.80–3.64 (m, 2H), 2.24 (dd, J = 5.6 Hz, 2.0 Hz, 1H), 1.69 (s, 3H), 1.60 (d, J = 6.0 Hz, 1H), 0.85 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 140.3, 139.4, 131.7, 129.8, 127.8, 126.5, 126.1, 125.9, 124.6 (q, ¹ $J_{CF} = 274.4$ Hz), 60.1, 37.1 (q, ² $J_{CF} = 32.3$ Hz), 29.7, 19.4 (q, ³ $J_{CF} = 2.2$ Hz), 14.1 (q, ³ $J_{CF} = 2.2$ Hz), 12.5; ¹⁹F NMR (376 MHz, CDCl₃) δ –61.5 (s, 3F); HRMS (ESI): calcd for C₂₀H₁₉F₃O₂Na [M+Na]⁺: 371.1225, found: 371.1227.

Ethyl 2-([1,1'-biphenyl]-4-yl)-1-methyl-2-(trifluoromethyl)cyclopropane-1-carboxylate (3ad-*isomer 2*). Yield 40% (97.4 mg), yellow solid, m.p.: 92.4–92.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61–7.58 (m, 4H), 7.46–7.43 (m, 4H), 7.38–7.34 (m, 1H), 4.33–4.17 (m, 2H), 2.12 (d, J = 6.0 Hz, 1H), 1.32 (t, J = 7.2 Hz, 3H), 1.29–1.26 (m, 1H), 1.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 140.5, 139.3, 130.7, 130.3, 127.8, 126.6, 126.2, 126.1, 124.5 (q, ¹ $J_{CF} = 273.6$ Hz), 60.5, 36.6 (q, ² $J_{CF} = 32.4$ Hz), 29.9, 19.0, 18.7 (q, ³ $J_{CF} = 2.0$ Hz), 12.9; ¹⁹F NMR (376 MHz, CDCl₃) δ –65.5 (s, 3F).

Ethyl 2-(6-chloropyridin-3-yl)-1-methyl-2-(trifluoromethyl)cyclopropane-1-carboxylate (3nd-isomer *1/isomer 2=5.7/1*). Yield 83% (178.4 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 2.0 Hz, 1H), 7.62 (d, J = 8.4 Hz, 2.4 Hz, 1H), 7.29 (d, J = 7.6 Hz, 1.14H), 4.30–4.12 (m, 0.36H), 3.90–3.80 (m, 2.05H), 2.32 (d, J = 6.4 Hz, 0.16H), 2.19 (s, 1H), 1.68 (d, J = 1.2 Hz, 3H), 1.67 (s, 0.53H), 1.65 (s, 0.51H), 1.58 (s, 0.19H), 1.28–1.25 (m, 1H), 0.97 (t, J = 7.0 Hz, 3H); ¹³CNMR (100 MHz, CDCl₃) δ 169.1, 150.6, 150.4, 139.7, 127.9, 124.0 (q, ¹ $_{JCF}$ = 274.4 Hz), 122.9, 61.5, 61.3, 60.6, 60.5, 34.7 (q, ² $_{JCF}$ = 31.8 Hz), 32.9, 29.7, 26.9, 19.3 (q, ³ $_{JCF}$ = 2.1 Hz), 16.7, 13.8 (q, ³ $_{JCF}$ = 2.5 Hz), 13.0, 12.9, 12.8; ¹⁹F NMR (376 MHz, CDCl₃) δ –61.6 (s, 3F), –69.6 (s, 0.04F); HRMS (ESI): calcd for C₁₃H₁₄ClF₃NO₂ [M+H]⁺: 308.0665, found: 308.0662.

trans-Ethyl 2-([1,1'-biphenyl]-4-yl)-2-(trifluoromethyl)cyclopropane-1-carboxylate (*trans*-3ae). Yield 80% (187.0 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.58–7.54 (m, 4H), 7.45–7.41 (m, 4H), 7.37–7.33 (m, 1H), 4.01–3.90 (m, 2H), 2.51 (dd, J = 8.8 Hz, 6.4 Hz, 1H), 1.90 (td, J = 5.8 Hz, 1.5 Hz, 1H), 1.74 (dd, J = 8.8 Hz, 5.6 Hz, 1H), 1.04 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 140.7, 139.4, 130.5, 129.4, 127.7, 126.5, 126.2, 126.1,126.0, 124.0 (q, ¹ $_{JCF}$ = 273.2 Hz), 60.1, 34.4 (q, ² $_{JCF}$ = 33.4 Hz), 22.7 (q, ³ $_{JCF}$ = 2.1 Hz), 13.3 (q, ³ $_{JCF}$ = 1.5 Hz), 12.9; ¹⁹F NMR (376 MHz, CDCl₃) δ –70.4 (s, 3F); HRMS (EI): calcd for C₁₉H₁₇F₃O₂ [M]⁺: 334.1181, found: 334.1180.

trans-Ethyl 2-(naphthalen-2-yl)-2-(trifluoromethyl)cyclopropane-1-carboxylate (*trans*-3be). Yield 74% (159.5 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.82–7.78 (m, 3H), 7.50–7.42 (m, 3H), 3.97–3.83 (m, 2H), 2.56 (dd, *J* = 8.4 Hz, 6.0 Hz, 1H), 1.98 (td, *J* = 5.8 Hz, 1.3 Hz, 1H), 1.79 (dd, *J* = 8.8 Hz, 5.2 Hz, 1H), 0.96 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 133.4, 133.1, 131.1, 128.9, 128.1 (t, ³*J*_{CF} = 5.3 Hz), 127.8, 126.7, 126.4, 125.2 (q, ¹*J*_{CF} = 273.1 Hz), 61.2, 35.9 (q, ²*J*_{CF} = 33.3 Hz), 23.9 (q, ³*J*_{CF} = 1.6 Hz), 14.6 (q, ³*J*_{CF} = 1.8 Hz), 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ –70.2 (s, 3F); HRMS (EI): calcd for C₁₇H₁₅F₃O₂ [M]⁺: 308.1024, found: 308.1022.

Diethyl 2-([1,1'-biphenyl]-4-yl)-2-(trifluoromethyl)cyclopropane-1,1-dicarboxylate (3af). Yield 44% (125.0 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.58–7.55 (m, 4H), 7.48–7.42 (m, 4H), 7.37–7.33 (m, 1H), 4.36–4.31 (m, 2H), 3.97–3.84 (m, 2H), 2.27 (d, J = 6.0 Hz, 1H), 2.14 (d, J = 5.2 Hz, 1H), 1.36 (t, J = 7.0 Hz, 3H), 0.95 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 140.9, 139.3, 130.1, 129.3, 127.8, 126.6, 126.1, 126.0, 123.4 (q, ¹ $J_{CF} = 274.4$ Hz), 61.2, 39.2 (q, ² $J_{CF} = 33.2$ Hz), 38.6, 17.8 (q, ³ $J_{CF} = 1.7$ Hz), 12.8, 12.6; ¹⁹F NMR (376 MHz, CDCl₃) δ –66.9 (s, 3F); HRMS (ESI): calcd for C₂₂H₂₁F₃O₄ Na [M+Na]⁺: 429.1290, found: 429.1292.

Diethyl 2-(2-([1,1'-biphenyl]-4-yl)-3,3-difluoroallyl)-2-chloromalonate (3af'). Yield 36% (106.3 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.58–7.55 (m, 4H), 7.46–7.42 (m, 2H), 7.37–7.32 (m, 3H), 4.00–3.92 (m, 2H), 3.88– 3.80 (m, 2H), 3.47 (t, *J* = 1.8 Hz, 2H), 1.14 (t, *J* = 7.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 155.4 (t, ¹*J*_{CF} = 289.7 Hz), 140.7, 140.4, 131.0 (t, ³*J*_{CF} = 2.9 Hz), 129.7 (t, ³*J*_{CF} = 2.5 Hz), 128.9, 127.6, 127.0, 126.8, 87.0 (t, ²*J*_{CF} = 19.5 Hz), 69.2 (t, ³*J*_{CF} = 2.8 Hz), 63.1, 36.1 (d, ³*J*_{CF} = 2.4 Hz), 13.7; ¹⁹F NMR (376 MHz, CDCl₃) δ –87.0 (d, *J* = 8.2 Hz, 1F), -87.5 (d, *J* = 8.3 Hz, 1F); HRMS (ESI): calcd for C₂₂H₂₁ClF₂O₄ Na [M+Na]⁺: 445.0994, found: 445.0992.

trans-2-((3-Aminophenyl)ethynyl)-2-(trifluoromethyl)cyclopropane-1-carbonitrile (*trans*-3qa). Yield 73% (127.8 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.10 (t, J = 7.8 Hz, 1H), 6.91 (d, J = 7.6 Hz, 1H), 6.83 (s, 1H), 6.69 (d, J = 7.6 Hz, 1H), 3.68 (s, 2H), 2.26 (t, J = 8.2 Hz, 1H), 1.88–1.84 (m, 1H), 1.79 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 145.1, 128.3, 121.5, 120.5, 121.8 (q, ¹ $J_{CF} = 273.4$ Hz), 117.3, 115.4, 115.2, 84.5, 77.1, 23.2 (q, ² $J_{CF} = 38.7$ Hz), 17.9 (q, ³ $J_{CF} = 2.3$ Hz), 10.2 (q, ³ $J_{CF} = 4.5$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –71.0 (s, 3F); HRMS (EI): calcd for C₁₃H₉F₃N₂ [M]⁺: 250.0718, found: 250.0721.

trans-2-([1,1'-Biphenyl]-4-ylethynyl)-2-(trifluoromethyl)cyclopropane-1-carbonitrile (*trans*-3ra). Yield 87% (189.4 mg), yellow solid, m.p.: 85.7–86.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.60–7.54 (m, 6H), 7.46–7.42 (m, 2H), 7.38–7.34 (m, 1H), 2.27 (dd, *J* = 9.6 Hz, 6.8 Hz, 1H), 1.87 (dd, *J* = 9.6 Hz, 6.0 Hz, 1H), 1.81–1.77 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 142.2, 140.1, 132.8, 129.0, 127.9, 127.1, 122.9 (q, ¹*J*_{CF} = 273.5 Hz), 119.8, 116.3, 85.2, 79.5 (q, ³*J*_{CF} = 1.3 Hz), 24.3 (q, ²*J*_{CF} = 38.8 Hz), 19.0, 11.4; ¹⁹F NMR (376 MHz, CDCl₃) δ –70.9 (d, *J* = 1.1 Hz, 3F); HRMS (EI): calcd for C₁₉H₁₂F₃N [M]⁺: 311.0922, found: 311.0920.

trans-2-(Phenylethynyl)-2-(trifluoromethyl)cyclopropane-1-carbonitrile (*trans*-3sa). Yield 70% (115.2 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.53–7.50 (m, 2H), 7.38–7.30 (m, 3H), 2.26 (dd, J = 9.6 Hz, 6.8 Hz, 1H), 1.86 (dd, J = 9.6 Hz, 6.0 Hz, 1H), 1.79–1.75 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 132.3, 129.5, 128.4, 122.9 (q, ¹ J_{CF} = 273.4 Hz), 121.0, 116.2, 85.3, 78.9, 24.3 (q, ² J_{CF} = 38.7 Hz), 19.0, 11.4 (q, ³ J_{CF} = 3.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –71.0 (s, 3F); HRMS (EI): calcd for C₁₃H₈F₃N [M]⁺: 235.0609, found: 235.0607.

cis-2-(Phenylethynyl)-2-(trifluoromethyl)cyclopropane-1-carbonitrile (*cis*-3sa). Yield 11% (18.1 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.42 (m, 2H), 7.38–7.31 (m, 3H), 2.24 (t, *J* = 8.4 Hz, 1H), 2.01–1.98 (m, 1H), 1.85–1.80 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 132.1, 129.5, 128.5, 122.8 (q, ¹*J*_{CF} = 274.2 Hz), 120.9, 115.0, 83.0, 80.9, 19.1 (q, ³*J*_{CF} = 1.2 Hz), 11.7; ¹⁹F NMR (376 MHz, CDCl₃) δ –67.6 (s, 3F).

Ethyl 2-((3-aminophenyl)ethynyl)-2-(trifluoromethyl)cyclopropane-1-carboxylate (3qc, *trans/cis*=3/1). Yield 52% (108.1 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.07 (t, *J* = 7.6 Hz, 1H), 6.83 (d, *J* = 7.6 Hz, 1H), 6.75 (s, 1H), 6.64 (d, *J* = 7.2 Hz, 1H), 4.29–4.14 (m, 2H), 3.54 (s, 2H), 2.48–2.41 (m, 1H), 2.02 (dd, *J* = 8.0 Hz, 6.0 Hz,

0.25H), 1.87–1.84 (m, 0.75H), 1.67 (dd, J = 8.8 Hz, 5.6 Hz, 0.75H), 1.64–1.60 (m, 0.26H), 1.29 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 165.5, 145.2, 145.1, 128.3, 128.2, 121.6, 121.3, 121.3, 120.0 (q, ¹ $J_{CF} = 272.9$ Hz), 117.1, 114.9, 114.7, 82.7, 80.2, 78.6, 60.8, 60.6, 28.7, 28.4, 24.6, 23.2 (q, ² $J_{CF} = 37.8$ Hz), 16.6 (q, ³ $J_{CF} = 1.2$ Hz), 16.3, 13.2, 13.0; ¹⁹F NMR (376 MHz, CDCl₃) δ –65.5 (s, 1F), –70.7 (s, 3F); HRMS (ESI): calcd for C₁₅H₁₅F₃NO₂ [M+H]⁺: 298.1055, found: 298.1053.

trans-Ethyl 2-([1,1'-biphenyl]-4-ylethynyl)-2-(trifluoromethyl)cyclopropane-1-carboxylate (*trans*-3rc). Yield 86% (215.5 mg), yellow solid, m.p.: 54.9–56.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.57–7.48 (m, 6H), 7.45–7.41 (m, 2H), 7.36–7.33 (m, 1H), 4.24 (q, *J* = 7.2 Hz, 2H), 2.46 (dd, *J* = 8.8 Hz, 7.2 Hz, 1H), 1.91–1.87 (m, 1H), 1.69 (dd, *J* = 8.8 Hz, 5.6 Hz, 1H), 1.29 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 141.5, 140.3, 132.5, 128.9, 127.8, 127.1, 127.0, 123.9 (q, ¹*J*_{CF} = 272.9 Hz), 120.9, 83.4, 81.0, 61.7, 25.7, 24.4 (q, ²*J*_{CF} = 37.9 Hz), 17.4, 14.4; ¹⁹F NMR (376 MHz, CDCl₃) δ –70.6 (s, 3F); HRMS (EI): calcd for C₂₁H₁₇F₃O₂ [M]⁺: 358.1181, found: 358.1185.

trans-Ethyl 2-(phenylethynyl)-2-(trifluoromethyl)cyclopropane-1-carboxylate (*trans*-3sc). Yield 51% (100.7 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 6.8 Hz, 2H), 7.33–7.25 (m, 3H), 4.23 (q, 7.2 Hz, 2H), 2.44 (t, J = 8.0 Hz, 1H), 1.89–1.86 (m, 1H), 1.70–1.66 (m, 1H), 1.28 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 130.9, 128.1, 127.8, 127.7, 127.2, 122.7 (q, ¹ $J_{CF} = 272.8$ Hz), 121.0, 82.4, 79.3, 60.6, 24.6, 23.2 (q, ² $J_{CF} = 37.9$ Hz), 16.3, 13.2; ¹⁹F NMR (376 MHz, CDCl₃) δ –70.7 (s, 3F); HRMS (ESI): calcd for C₁₅H₁₄F₃O₂ [M+H]⁺: 283.0946, found: 283.0943.

9. References

(1) Y. Q. Guo, Y. P. Cao, H. J. Song, Y. X. Liu and Q. M. Wang, Photoredox relay-catalyzed *gem*-difluoroallylation of alkyl iodides, *Chem. Commun.*, 2021, **57**, 9768.

(2) F. L. Chen, X. F. Xu, Y. L. He, G. P. Huang and S. L. Zhu, NiH-Catalyzed migratory defluorinative olefin crosscoupling: trifluoromethyl-substituted alkenes as acceptor olefins to form *gem*-difluoroalkenes, *Angew. Chem., Int. Ed.*, 2020, **59**, 5398.

(3) Y. F. Chen, N. N. Ni, D. P. Cheng and X. L. Xu, The coupling of alkylboronic acids with α -(trifluoromethyl)styrenes by lewis base/photoredox dual catalysis, *Tetrahedron Lett.*, 2020, **61**, 152425.

(4) Y. Li, B. Zhao, K. Dai, D. H. Tu, B. Wang, Y. Y. Wang, Z. T. Liu, Z. W. Liu and J. Lu, Palladium-catalyzed Suzukie-Miyaura reaction of fluorinated vinyl chloride: a new approach for synthesis α and α , β -rifluoromethylstyrenes, *Tetrahedron*, 2016, **72**, 5684.

(5) W. J. Yue, C. S. Day and R. Martin, Site-selective defluorinative sp³ C–H alkylation of secondary amides, *J. Am. Chem. Soc.*, 2021, **143**, 6395.

(6) C. M. Hu, F. Hong and Y. Y. Xu, Synthesis of trifluoromethyl-substituted conjugated enynes including a fluorinated siccayne, *J. Fluorine Chem.*, 1993, **64**, 1.

(7) J. R. Denton, D. Sukumaran and H. M. L. Davies, Enantioselective synthesis of trifluoromethyl-substituted cyclopropanes, *Org. Lett.*, 2007, **14**, 2625.

10. ¹H, ¹³C, ¹⁹F NMR and HRMS spectra of target compounds

¹H NMR spectrum of *trans*-3aa

¹³C NMR spectrum of *trans*-3aa

HRMS (EI) spectrum of trans-3aa

¹³C NMR spectrum of *cis*-3aa

¹³C NMR spectrum of *trans*-3ba

¹⁹F NMR spectrum of *trans*-3ba

HRMS (EI) spectrum of trans-3ba

¹H NMR spectrum of *cis*-3ba

¹³C NMR spectrum of *cis*-3ba

¹⁹F NMR spectrum of *cis*-3ba

¹H NMR spectrum of *trans*-3ca

¹³C NMR spectrum of *trans*-3ca

¹⁹F NMR spectrum of *trans*-3ca

HRMS (EI) spectrum of trans-3ca

¹H NMR spectrum of *cis*-3ca

¹³C NMR spectrum of *cis*-3ca

S28

¹H NMR spectrum of *trans*-3da

¹³C NMR spectrum of *trans*-3da

¹⁹F NMR spectrum of *trans*-3da

HRMS (EI) spectrum of trans-3da

¹H NMR spectrum of *cis*-3da

¹⁹F NMR spectrum of *cis*-3da

¹H NMR spectrum of *trans*-3ea

¹³C NMR spectrum of *trans*-3ea

¹⁹F NMR spectrum of *trans*-3ea

HRMS (EI) spectrum of trans-3ea CS-DYP-295

Waters GCT Premier

¹H NMR spectrum of *cis*-3ea

¹⁹F NMR spectrum of *cis*-3ea

¹H NMR spectrum of *trans-3fa*

¹⁹F NMR spectrum of *trans*-3fa

HRMS (EI) spectrum of trans-3fa

CS-DYP-279 Waters GCT Premier 20222033 237 (3.950) Cm (237-(15+23)) TOF MS EI+ 210.0532 1.67e4 100 * 190.0469 279.0480 183.0422 260.0493 211.0579 140.0503 191.0512 280.0516 170.0399 114.0443 133.0460 229.0515 240.0431 261.0522 43.9900 151.0362 281.0527 75.0143 0 ---- m/z 280 100 140 200 40 60 80 120 160 180 220 240 260

¹H NMR spectrum of *cis*-3fa

¹⁹F NMR spectrum of *cis*-3fa

¹H NMR spectrum of *trans*-3ga

¹³C NMR spectrum of *trans*-3ga

¹⁹F NMR spectrum of *trans*-3ga

HRMS (EI) spectrum of trans-3ga

¹³C NMR spectrum of *cis*-3ga

¹H NMR spectrum of *trans*-3ha

¹³C NMR spectrum of *trans*-3ha

¹⁹F NMR spectrum of *trans*-3ha

HRMS (ESI) spectrum of trans-3ha

¹H NMR spectrum of *trans*-3ia

¹⁹F NMR spectrum of *trans*-3ia

HRMS (EI) spectrum of trans-3ia

Waters GCT Premier

¹H NMR spectrum of *trans*-3ja

¹³C NMR spectrum of *trans*-3ja

¹⁹F NMR spectrum of *trans*-3ja

S48

HRMS (EI) spectrum of trans-3ja

¹H NMR spectrum of *trans*-3ka

¹⁹F NMR spectrum of *trans*-3ka

HRMS (EI) spectrum of trans-3ka

CS-DYP-257

¹H NMR spectrum of *trans-3*la

¹³C NMR spectrum of *trans*-3la

¹⁹F NMR spectrum of *trans*-3la

HRMS (EI) spectrum of trans-3la

Waters GCT Premier

¹H NMR spectrum of *trans*-3ma

¹³C NMR spectrum of *trans*-3ma

HRMS (EI) spectrum of trans-3ma

Waters GCT Premier

¹H NMR spectrum of *cis*-3ma

¹³C NMR spectrum of *cis*-3ma

¹H NMR spectrum of *trans*-3na

¹³C NMR spectrum of *trans*-3na

HRMS (EI) spectrum of trans-3na

¹H NMR spectrum of *cis*-3na

¹³C NMR spectrum of *cis*-3na

S59

¹H NMR spectrum of *trans*-30a

¹⁹F NMR spectrum of *trans*-30a

Elemental Composition Report

Single Mass Analysis Tolerance = 20.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 308 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 14-14 H: 10-10 N: 0-20 O: 0-20 F: 3-3 Na: 0-3 6 230410-1-19 6 (0.085) 1: TOF MS ES+ 8.05e+006 263.0794 100-% 264.0819 285.0607 285.0607 305.1582 349.1870 364.0763 393.2013 415.2173 280 300 320 340 360 380 400 420 231.0732 125.9847 167.0706 193.0764 214.9179 120 140 160 180 200 220 0-ידוליוויןיייזיייןיייי 240 260 Minimum: -1.55.0 20.0 50.0 Maximum: PPM DBE Calc. Mass mDa i-FIT Conf(%) Formula Mass Norm 263.0794263.0796 -0.2 -0.8 253.4 C14 H10 N2 F3 9.5 n/a n/a

¹H NMR spectrum of *trans*-3pa

Page 1

¹³C NMR spectrum of *trans*-3pa

¹⁹F NMR spectrum of *trans*-3pa

HRMS (ESI) spectrum of trans-3pa

¹H NMR spectrum of *cis*-3pa

¹⁹F NMR spectrum of *cis*-3pa

¹³C NMR spectrum of **3ac**

¹⁹F NMR spectrum of **3ac**

HRMS (ESI) spectrum of 3ac

Elemental Composition Report

Single Mass Analysis Tolerance = 20.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 312 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 18-18 H: 14-14 N: 0-30 O: 0-100 F: 3-3 Na: 0-1 3 230512-2-3 5 (0.076) 1: TOF MS ES+ 1.71e+006 324.0977 100-%-325.1007 302.1157 243.0625 255.0983 282.1101 301.1414 306.0715 341.6037 362.1160 386.0689 406.5800 416.1920 425.6241 301.1414 2306.0715 241.6037 362.1160 386.0689 406.5800 416.1920 425.6241 301.2014 2014 300 310 320 330 340 350 360 370 380 390 400 410 420 430 0-230 Minimum: -1.5 Maximum: 5.0 20.0 50.0 Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula C18 H14 N F3 Na 324.0977 324.0976 0.1 0.3 10.5 153.3 n/a n/a

Page 1

¹³C NMR spectrum of **3hc**-*isomer 1*

S68

¹⁹F NMR spectrum of **3hc**-*isomer 1*

HRMS (ESI) spectrum of **3hc-isomer 1**

Elemental Composition Report	Page 1
Single Mass Analysis Tolerance = 20.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3	
Monoisotopic Mass, Even Electron Ions 256 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 14-14 H: 12-12 N: 0-30 O: 0-100 F: 3-3 Na: 0-1 3	
230512-2-2 8 (0.102)	1: TOF MS ES+ 3 52e+006
306.0721 306.0721 307.0752 300.0721 307.0752 300.0721 307.0752 300.0721 307.0752 300.0721 307.0752 300.0725 300.0725 300.0725 300.0725 300.0725 300.0755 300.07	561.4141 550 m/z
Minimum: -1.5 Maximum: 5.0 20.0 50.0	
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula 306.0721 306.0718 0.3 1.0 7.5 117.0 n/a n/a C14 H12 N 02 F3 Na	

¹³C NMR spectrum of **3hc**-*isomer 2*

¹⁹F NMR spectrum of **3hc**-*isomer 2*

¹H NMR spectrum of **3nc-***isomer 1*

¹⁹F NMR spectrum of **3nc-***isomer* **1**

Elemental Composition Report

Single Mass Analysis Tolerance = 20.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons 209 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

Elements Used: C: 11-11 H: 9-9 N: 0-30 O: 0-100 Na: 0-1 Cl: 1-2 F: 3-3

¹H NMR spectrum of **3ad-***isomer* **1**

S73

Page 1

¹⁹F NMR spectrum of **3ad-***isomer* **1**

HRMS (ESI) spectrum of 3ad-isomer 1

¹H NMR spectrum of **3ad-isomer 2**

¹³C NMR spectrum of **3ad-***isomer 2*

¹⁹F NMR spectrum of **3ad-***isomer* **2**

¹H NMR spectrum of **3nd**

¹³C NMR spectrum of **3nd**

¹⁹F NMR spectrum of **3nd**

HRMS (ESI) spectrum of 3nd

Elemental Composition Report

Page 1

¹³C NMR spectrum of *trans*-3ae

¹⁹F NMR spectrum of *trans*-3ae

HRMS (EI) spectrum of *trans*-3ae

¹H NMR spectrum of *trans*-3be

¹³C NMR spectrum of *trans*-3be

¹⁹F NMR spectrum of *trans*-3be

HRMS (EI) spectrum of *trans*-3be

S82

¹H NMR spectrum of **3af**

¹³C NMR spectrum of **3af**

¹⁹F NMR spectrum of **3af**

HRMS (ESI) spectrum of 3af

¹³C NMR spectrum of **3af'**

¹⁹F NMR spectrum of **3af'**

HRMS (ESI) spectrum of 3af'

¹H NMR spectrum of *trans*-3qa

¹³C NMR spectrum of *trans*-3qa

¹⁹F NMR spectrum of *trans*-3qa

¹H NMR spectrum of *trans*-3ra

¹³C NMR spectrum of *trans*-3ra

HRMS (EI) spectrum of trans-3ra

¹³C NMR spectrum of *trans*-3sa

HRMS (EI) spectrum of *trans*-3sa

¹H NMR spectrum of *cis*-3sa

¹³C NMR spectrum of *cis*-3sa

¹H NMR spectrum of **3qc**

Element	al Compos	sition	Repor	t									Pa	ige 1
Single N Tolerance Element p Number c	lass Analy = 20.0 PPM prediction: O of isotope pea	sis 1 / D ff aks use	BE: mii ed for i-	n = -1.5 FIT = 3	, max =	50.0								
Monoisoto 423 formul Elements C: 15-15	pic Mass, Eve a(e) evaluated Jsed: H: 15-15	n Electi d with 1 N: 0-2	ron lons results 0 O: 0	within lir D-20 F	mits (up =: 3-3	to 50 clo Na: 0-3	sest resul	ts for each	mass)					
6 230410-1-2	1 13 (0.161)												1: TOF	MS ES+
100							298.105	3					0.	2001000
%- - 284. 0	⁰⁹⁴⁵ 286.8727 7	288.925	6 ^{291.66}	41 <u>293</u> 292.0	.1107_29	5.2000 29	97.1080 29 298.0	9.1093 301 	1429 302. 	1494 305. 	1597 306. 	2815 309.: 308.0	2018_310.10 310.0 3	75 TT m/z 12.0
Minimum: Maximum:		5.0	20.0	-1.5 50.0										
Mass 298.1053	Calc. Mass 298.1055	mDa -0.2	PPM −0.7	DBE 7.5	i-FIT 195.4	Norm n/a	Conf(%) n/a	Formula C15 H15 N	02 F3					

¹H NMR spectrum of *trans*-3rc

¹³C NMR spectrum of *trans*-3rc

¹⁹F NMR spectrum of *trans*-3rc

¹H NMR spectrum of *trans*-3sc

¹³C NMR spectrum of *trans*-3sc

¹⁹F NMR spectrum of *trans*-3sc

HRMS (ESI) spectrum of *trans-3sc*

Elemental Composition Report												Page 1	
Single Mass Analysis Tolerance = 20.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3													
Monoisotop 374 formula Elements U C: 15-15	oic Mass, Eve a(e) evaluated Jsed: H: 14-14	n Electro d with 1 N: 0-20	on lons results) O: (; within li 0-20	mits (up to F: 3-3	o 50 clos Na: 0-3	sest resul	ts for eac	h mass)				
230410-1-20	0 5 (0.076)												1: TOF MS ES+
100 						2	83.0943						2.0.0.000
270.11	92 271.1294	274.2805	275.11	02 27	79.0472	282.07	72 284.09	074 85.1044 28	37.0995	289.5703	292.0651 294	.0910 ^{295.0}	0832 297.1112
270.0	272.5	275.	.0	277.5	280.0	28	2.5	285.0	287.5	290.0	292.5	295.0	297.5
Minimum: Maximum:		5.0	20.0	-1.5 50.0									
Mass 283.0943	Calc. Mass 283.0946	mDa -0.3	PPM −1.1	DBE 7.5	i-FIT 293. 7	Norm n/a	Conf(%) n∕a	Formula C15 H14	02 F3				

11. GC-MS spectra of compounds cis-3ha, cis-3ia, cis-3ja, cis-3ka, cis-3la, cis-3oa and 3nc-

GC-MS spectrum of cis-3ia

GC-MS spectrum of cis-3ja

GC-MS spectrum of cis-3ka

S104

GC-MS spectrum of cis-3la

S105

GC-MS spectrum of cis-30a

GC-MS spectrum of 3nc-isomer 2

