Synthesis, photophysical, bioimaging potential and *in vitro toxicity* studies of

naphthalimide imidazole boron complexes

Ramu V. Ranga Naidu Chinta^a, Sushree Sulava^b, Basava Punna Rao Aradhyula^a, HarithaLakshmi Jandhyam^b, Debasmita Pankaj Alone^{b,c,*} and Krishnan Venkatasubbaiah^{a,c,*}

^aSchool of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India. E-mail: krishv@niser.ac.in

^bSchool of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India. E-mail: debasmita@niser.ac.in

^cCenter for Interdisciplinary Sciences (CIS), National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.

General Information

Vacuum line techniques were used for handlings air and moisture sensitive compounds. All reagents and metal precursors used for the reactions were purchased from spectrochem, Alfa-aesar and Sigma-Aldrich otherwise mentioned. The 2-butyl-6-hydroxy-1,3-dioxo-2,3dihydro-1H-benzo[de]isoquinoline-5-carbaldehyde was synthesized by adopting the literature procedure. Acetic acid, dichloromethane (DCM), tetrahydrofuran (THF), and toluene were purchased from Spectrochem India. Toluene and THF were distilled from Na/benzophenone prior to use. Chlorinated solvents were distilled from CaH₂. ¹H NMR (400 MHz, 700 MHz), ¹³C NMR (100 MHz, 176 MHz), ¹¹B NMR (128 MHz), ¹⁹F NMR (376 MHz) spectra were recorded on a Bruker ARX 400 and 700 spectrometers operating at 400 MHz and 700 MHz respectively. All ¹H and ¹³C NMR spectra were referenced internally to residual solvent signals namely chloroform ($\delta = 7.26$ ¹H; $\delta = 77.16$ ¹³C in ppm), ¹¹B NMR spectra were referenced externally to BF₃·OEt₂ in CDCl₃ (δ = 0), and ¹⁹F NMR was recorded with reference to α , α , α trifluorotoluene. All NMR spectra were recorded at ambient temperature. Chemical shifts in all the NMR spectra are reported in ppm (δ) with the multiplicities represented by singlet (s), doublet (d), triplet (t), quartet (q), muliplet (m), doublet of doublet (dd) and broad (br). Coupling constants (J) are reported in Hertz. Melting points for the solid compounds were measured on a Fischer John's melting point apparatus and mentioned as obtained. ESI-MS spectra were obtained from Bruker, microTOF-QII mass spectrometer. Elemental analyses were performed in a Euro Vector EA 3000 CHNS analyzer. Distilled and degassed solvents used for photo physical properties. UV-Visible spectral measurements were performed using Jasco Lambda 750 UV/Visible spectrometer. All the fluorescence spectral measurements, absolute fluorescence quantum yields in solution and solid-state were performed with Edinburg fluorescence FS5 spectrophotometer and the instrumental response corrected for each experiment. Integrating sphere method was used for calculating the quantum yields.

Single crystal X-ray diffraction data were collected on Rigaku diffractometer at 293 K, 293 K and 130 K for complexes 1-3 respectively using Cu-K α radiation ($\lambda = 1.54184$). SHELXT program was used for solving the crystal structures and simultaneous refinement was done¹ with least-squares minimization using SHELXL incorporated in Olex2². In order to refine non-hydrogen atoms anisotropic displacement coefficients were used and the hydrogen atoms were placed at calculated positions and were refined as riding atoms. CCDC number 2267326-2267328.

Stock solution preparation: 3.82 mg of the compound was dissolved in 250 microlitres of DMSO to make a stock solution of 25 mM. 1 microlitre of this stock solution was diluted with 999 microlitres of DMEM (Cell culture medium) to yield a working concentration of 25 micromolar. 100 microlitre of this working concentration solution was added to each well for 25 micromolar concentration treatment so that the final DMSO concentration was 0.1%. Similarly, for the control well, 1 microlitre of DMSO was diluted with 999 microlitres of this solution were added to each well of the vehicle-treated lane so that the final DMSO concentration was 0.1%.

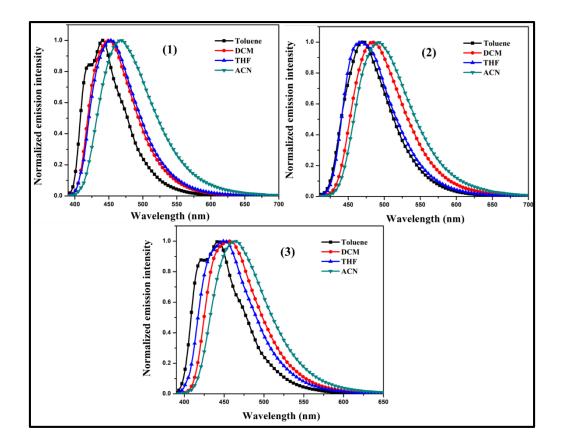
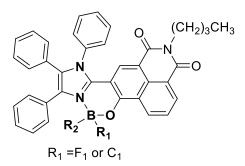



Figure S1: Normalized fluorescence spectra of the boron complexes 1-3 with increasing solvent polarity at concentration of 20 μ M.

Crystal data and structure refinement parameters						
	1	2	3			
Empirical formula	C37H28BF2N3O3.C	C49H38BN3O3.(CHCl3)2	$C_{49}H_{28}BF_{10}N_3$			
	HCl ₃	C49H38DIN3O3.(CHCl3)2	O ₃ .(CHCl ₃) ₂			
Formula weight	730.80	966.37	1146.29			
Temperature/K	293(2)	293(2)	130(20)			
crystal system	Triclinic	Triclinic	Triclinic			
space group	PĪ	ΡĪ	$P\overline{1}$			
a [Å]	11.5584(4)	10.7782(2)	10.8114(3)			
b [Å]	12.9493(5)	11.7248(2)	12.1669(3)			
c [Å]	13.6334(5)	20.6634(2)	20.5830(4)			
α[[°]]	100.768(3)	84.1410(10)	84.284(2)			
β[°]	97.117(3)	86.9470(10)	86.457(2)			
γ[°]	113.238(3)	65.911(2)	63.952(3)			
Volume /Å ³	1797.32(12)	2371.22(7)	2419.91(12)			
Z	2	2	2			
$\rho_{\rm calc}[\rm g\ cm^{-3}]$	1.350	1.353	1.573			
μ (CuK _{α}) [mm ⁻¹]	2.740	3.671	4.008			
F (000)	752.0	996.0	1156.0			
Crystal size [mm] ³	0.15 imes 0.13 imes 0.09	$0.16 \times 0.13 \times 0.11$	0.15 imes 0.12 imes			
			0.11			
θ range [°]	3.382- 65.0	4.146-68.244	4.057-66.987			
	$-13 \le h \le 13$,	$-12 \le h \le 12$,	$-12 \le h \le 12$,			
Index ranges	$-15 \le k \le 15,$	$-14 \le k \le 14,$	$-14 \le k \le 13$,			
	$-16 \le l \le 15$	$-24 \le 1 \le 19$	$-24 \le l \le 18$			
reflections collected	23597	32740	29208			
Independent reflns	6104	8654	8632			
	$[R_{int} = 0.0685]$	$[R_{int} = 0.0536]$	$[R_{int} = 0.2132]$			
data/restraints/parameters	6104/105/491	8654/138/652	8632/63/705			
Goodness-of-fit on F^2	1.057	1.090	1.519			
	$R_1 = 0.0648, wR_2 =$	$R_1 = 0.0609, wR_2 = 0.1852$				
Final R indexes $[I \ge 2\sigma(I)]$	0.2024		$0.1420, wR_2 =$			
			0.3507			
	$R_1 = 0.0721, wR_2$		$R_1 =$			
R indexes [all data]	= 0.2099	$R_1 = 0.0661, wR_2 = 0.1902$				
Langest diff mask-/hala/a Å-3	0.45/ 0.40	0.57/ 0.40	0.3699			
Largest diff.peak/hole/e Å ⁻³	0.45/-0.40	0.57/-0.46	1.34/-0.88			

 Table S1: Crystallographic information and refinement parameters for complexes 1-3

 Table S2: List of selected bond lengths [Å] and bond angles [°] for complexes 1-3.

$R_2 = F_2 \text{ or } C_2$

	1		2		3		
Bond lengths [Å]							
B-F ₁	1.369 (3)	B-O	1.513 (3)	B-O	1.482(6)		
B-F ₂	1.369 (3)	B-N	1.608 (3)	B-N	1.577 (5)		
B-O	1.449 (3)	$B-C_1$	1.609(3)	B-C ₁	1.639 (7)		
B-N	1.571 (2)	B-C ₂	1.614 (3)	B-C ₂	1.636 (7)		
Bond angles [°]							
F ₂ -B-F ₁	111.5 (2)	C ₁ -B1-C ₂	117.4 (2)	N-B-O	107.4 (3)		
O-B-F ₁	109.2 (2)	O-B-C ₂	108.9 (2)	C ₁ -B-C ₂	116.4 (3)		
O-B-F ₂	109.9(2)	$O-B-C_1$	106.1 (2)	O-B-C ₂	105.2 (4)		
N-B-F ₁	108.9 (2)	$N-B-C_1$	108.9 (2)	O-B-C ₁	106.8 (4)		
N-B-F ₂	109.0 (2)	N-B-C ₂	110.1 (2)	$N-B-C_1$	112.6 (4)		
N-B-O	108.5 (2)	O-B-N	104.4 (2)	N-B-C ₂	107.8 (3)		

	Solvent	λ_{max}^{a} (nm)	ε_{max} (M ⁻¹ cm ⁻¹	$\lambda_{em}^{[a,b]}$	$arPsi_{ ext{F}}^{[c]}$	Stokes shift
_		~ /	$X 10^{3}$)	(nm)	(%)	(cm ⁻¹)
1	Toluene	321, 367	45.2, 14.7	421, 441	45	4572
-	CH_2Cl_2	319, 365	46.2, 14.8	450	56	5175
	THF	319, 364	46.1, 14.6	453	65	5397
	CH ₃ CN	315, 362	49.4, 13.3	468	66	6256
	TLF	319, 365		502	37	7476
2	Toluene	325, 364	42.2, 9.7	471	64	6241
-	CH_2Cl_2	325, 375	45.2, 16.2	485	87	6048
	THF	323, 372	42.0, 13.3	472	86	5695
	CH ₃ CN	321, 369	41.5, 9.7	495	78	6898
	TLF	325, 356,		493	58	6383
		375				
3	Toluene	322, 371	42.1, 14.4	428, 448	31	4633
U	CH_2Cl_2	322, 371	42.6, 14.3	458	56	5120
	THF	320, 369	44.9, 14.7	455	43	5122
	CH ₃ CN	319, 369	44.3, 13.4	467	69	5687
	TLF	322, 371		454	31	4928
L	Toluene	325, 393	34.9, 5.5	470	24	4259
-		225 205	415 70	472	24	5114
	CH_2Cl_2	325, 395	41.5, 7.9	495	47	5114
	THF	323, 390	36.29, 5.5			5480
				496	35	
	CH ₃ CN	321,391	53.0, 5.3	512	47	6044

Table S3. Photophysical data for imidazole boron complexes 1-3 and L.

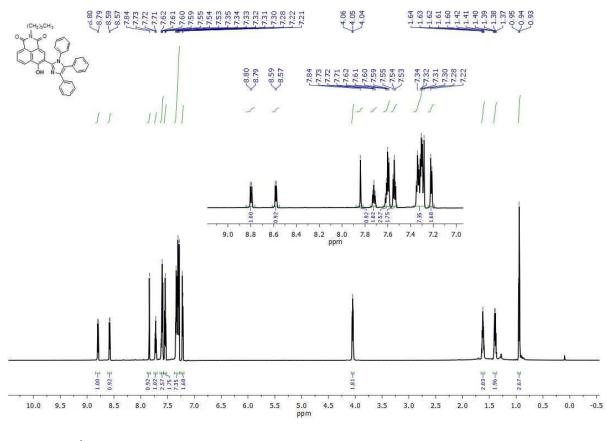
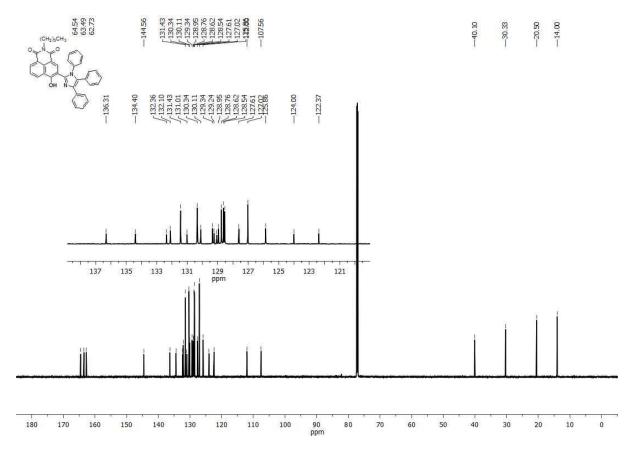



Figure S2: ¹H NMR spectrum of ligand (L)

Figure S3: ¹³C NMR spectrum of ligand (L)

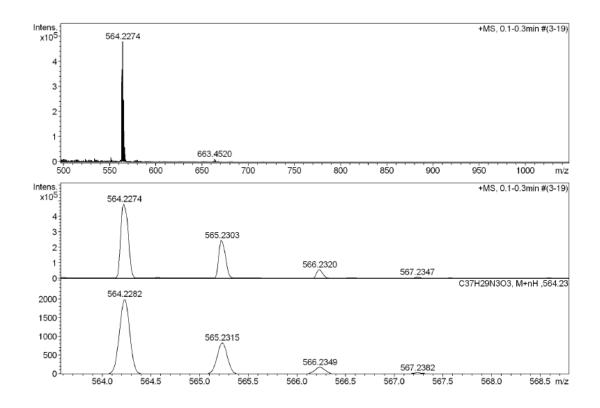


Figure S4: HR-MS of ligand (L)

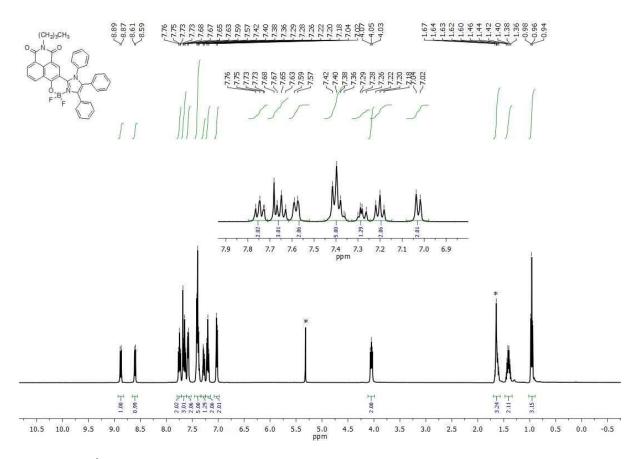


Figure S5: ¹H NMR spectrum of complex 1

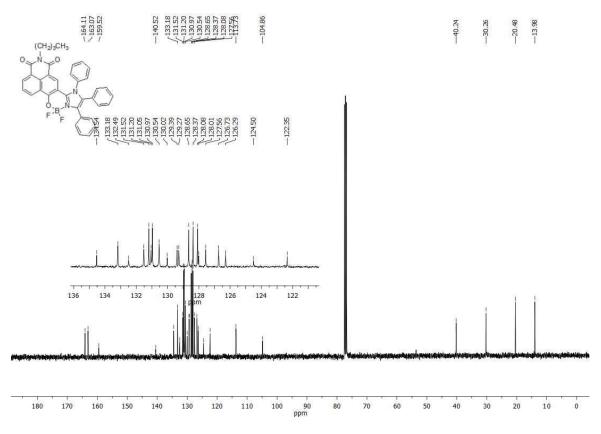
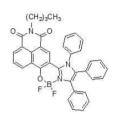



Figure S6: ¹³C NMR spectrum of complex 1

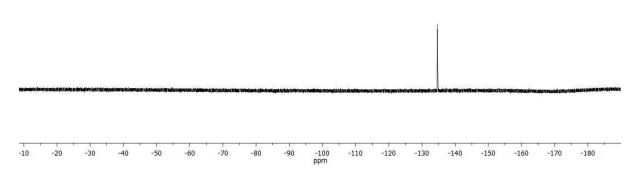


Figure S7: ¹⁹F NMR spectrum complex 1

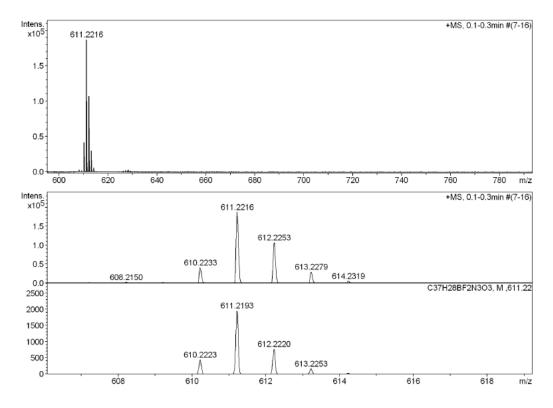


Figure S8: HR-MS of complex 1

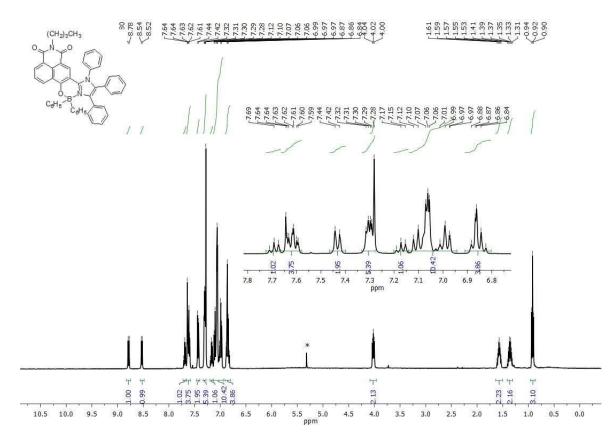
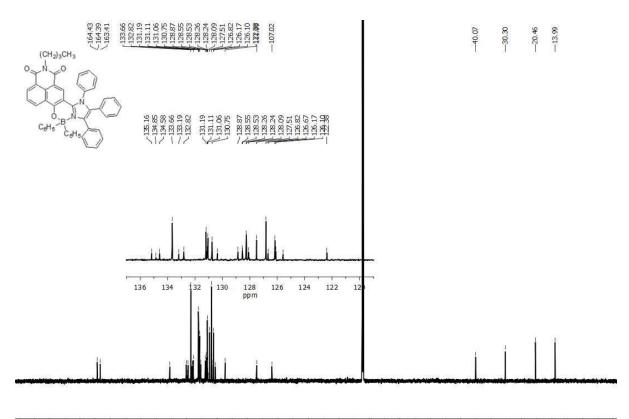



Figure S9: ¹H NMR spectrum of complex 2

ppm

Figure S10: ¹³C NMR spectrum of complex 2

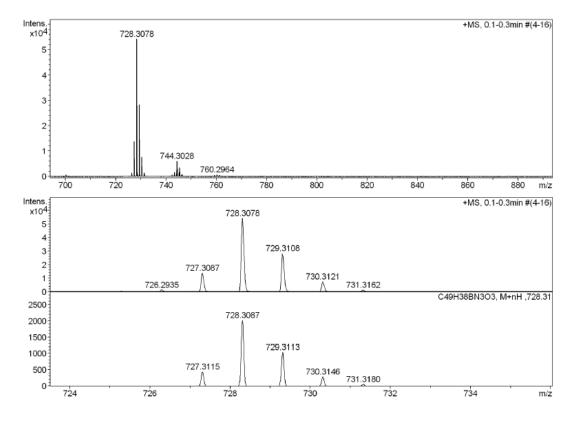


Figure S11: HR-MS of complex 2

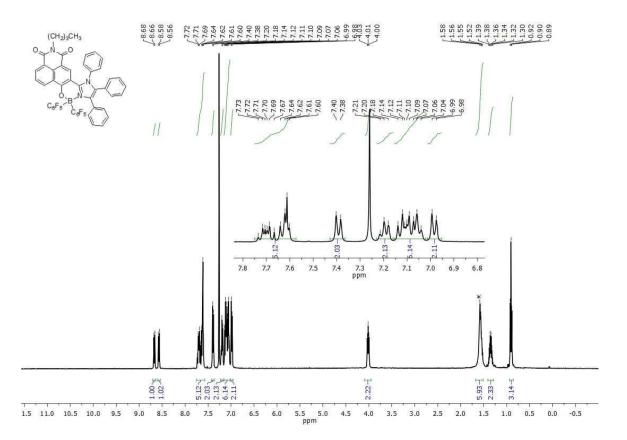


Figure S12: ¹H NMR spectrum of complex 3

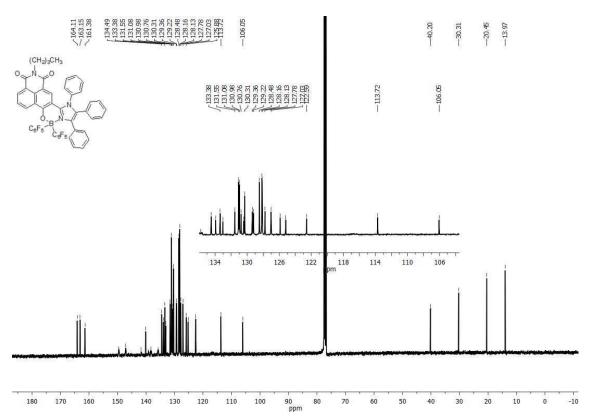
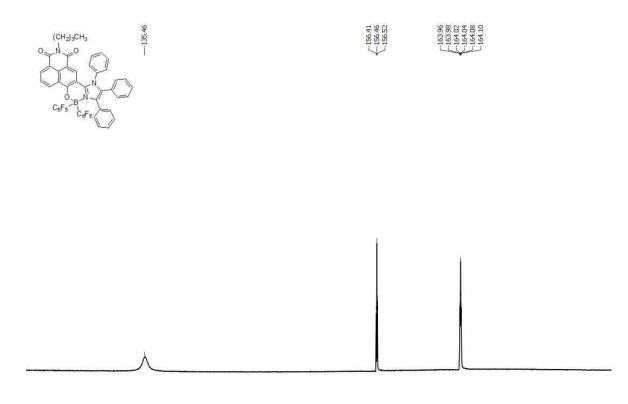



Figure S13: ¹³C NMR spectrum of complex 3

-126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -168 -170 -172 -174 -176 ppm

Figure S14: ¹⁹F NMR spectrum of complex 3

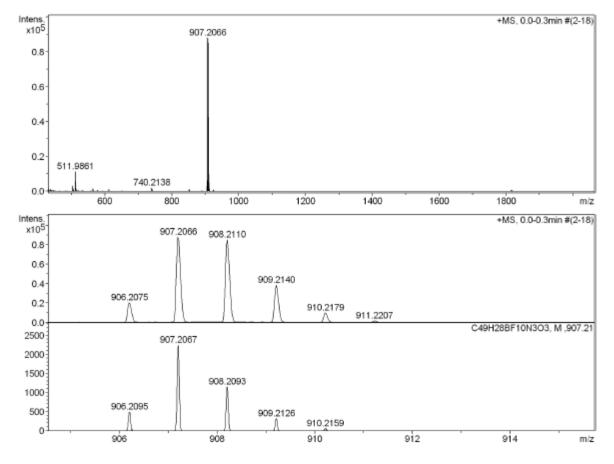


Figure S15: HR-MS of complex 3

References:

- Sheldrick, G. M. Acta Crystallogr. Sect. A: Found. Crystallogr. 2008, 64, 112. Allen, A. J.; Hajdu, J.; McIntyre, G. J. J. Appl. Crystallogr. 2018, 51, 233. (1)
- (2)