Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Fluorescent cadmium(II) metal-organic frameworks exhibiting

excellent stability and detection ability to Fe³⁺ and MnO₄⁻ ions

Peipei Cen,^{a‡,*} Tongtong, Ma,^{a‡} Fujunrui Jiang,^a Fengyuan Zhang,^a Yanping He,^b Runmei Ding^a and Danian Tian^{a,*}

- a College of Public Health, College of Basic Medical Science, Ningxia Medical University, YinChuan 750021, China.
- b Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University.
- [‡] These authors contributed equally to this work.

*Corresponding author

Dr. Peipei Cen

E-mail: 13895400691@163.com

*Corresponding author Prof. Danian Tian

E-mail: tiandanian@163.com.

Contents:

 Table S1. Selected crystallographic data and structure refinement for compounds

 NLMOF-1 and NLMOF-2

Table S2. Selected bond lengths (Å) and bond angles ([°]) for NLMOF-1

Table S3. Selected bond lengths (Å) and bond angles (⁹) for NLMOF-2

Fig. S1 Topology graph of NLMOF-1

Fig. S2 Topology graph of NLMOF-2

Fig. S3 Powder X-ray diffraction pattern of NLMOF-1 and NLMOF-2

Fig. S4 TG curve of NLMOF-1

Fig. S5 The solid state flurescence spectrum of H₄tcbpe ligand (a) and NLMOF-1 (b)

Fig. S6 Emission spectra of NLMOF-1 in 10mM different cations at 430 nm in H₂O

Fig. S7 Emission spectra of **NLMOF-1** in 10mM different anions at 430 nm in H₂O

Fig. S8 Fluorescence intensity of NLMOF-1 when MnO_4^- coexists with other anions in H₂O

Fig. S9 Emission spectra of NLMOF-1 dispersed in H_2O with different concentrations of MnO_4^-

Fig. S10 Stern-Volmer plot of different concentrations of MnO_4^- exist in H₂O of NLMOF-1

Fig. S11 (a) Excitation spectra of **NLMOF-1** in aqueous solution; (b) UV-vis adsorption spectra of $Na_x(A)$ in aqueous solution

Fig. S12 Emission spectra of NLMOF-1 in 10mM different cations at 430 nm in DMF

Fig. S13 Fluorescence intensity of **NLMOF-1** when Fe³⁺ coexists with other cations in DMF

Fig. S14 Emission spectra of NLMOF-1 dispersed in DMF with different concentrations of Fe^{3+}

Fig. S15 Stern-Volmer plot of different concentrations of Fe³⁺ exist in NLMOF-1

Fig. S16 Emission spectra of NLMOF-1 in 10mM different anions at 430 nm in DMF Fig. S17 (a) Emission spectra of NLMOF-1 dispersed in DMF with different concentrations of CrO_4^{2-} ; (b) Emission spectra of NLMOF-1 dispersed in DMF with different concentrations of MnO_4^{-}

Fig. S18 (a) Stern-Volmer plot of different concentrations of CrO_4^{2-} exist of **NLMOF-1** in DMF; (b) Stern-Volmer plot of different concentrations of MnO_4^{-} exist of **NLMOF-1** in DMF

Fig. S19 (a) Excitation spectra of **NLMOF-1** in DMF solution; (b) UV-vis adsorption spectra of $M(NO_3)_x$ in DMF solution

Fig. S20 Emission spectra of NLMOF-1 in 10mM different cations at 430 nm in acetonitrile

Fig. S21 Fluorescence intensity of **NLMOF-1** when Fe³⁺ coexists with other cations in acetonitrile

Fig. S22 Emission spectra of NLMOF-1 dispersed in acetonitrile with different concentrations of Fe^{3+}

Fig. S23 Emission spectra of NLMOF-1 in 10mM different anions at 430 nm in acetonitrile

Fig. S24 Fluorescence intensity of NLMOF-1 when MnO_4^- coexists with other anions in acetonitrile

Fig. S25 Emission spectra of NLMOF-1 dispersed in acetonitrile with different concentrations of MnO_4^-

Fig. S26 (a) Stern-Volmer plot of different concentrations of Fe^{3+} exist of **NLMOF-1** in acetonitrile; (b) Stern-Volmer plot of different concentrations of MnO_4^- exist of **NLMOF-1** in acetonitrile

Fig. S27 Emission spectra of NLMOF-1 in 10mM different cations at 430 nm in methanol

Fig. S28 Emission spectra of NLMOF-1 in 10mM different anions at 430 nm in methanol

Fig. S29 (a) Emission spectra of NLMOF-1 dispersed in methanol with different concentrations of Fe^{3+} ; (b) Emission spectra of NLMOF-1 dispersed in methanol with different concentrations of Cr^{3+}

Fig. S30 (a) Stern-Volmer plot of different concentrations of Fe^{3+} exist of **NLMOF-1** in methanol; (b) Stern-Volmer plot of different concentrations of Cr^{3+} exist of **NLMOF-1** in methanol

Fig. S31 Emission spectra of NLMOF-1 in 10mM different cations at 430 nm in ethanol

Fig. S32 Emission spectra of NLMOF-1 in 10mM different anions at 430 nm in ethanol

Fig. S33 (a) Emission spectra of NLMOF-1 dispersed in ethanol with different concentrations of Fe^{3+} ; (b) Emission spectra of NLMOF-1 dispersed in ethanol with different concentrations of Cr^{3+}

Fig. S34 (a) Stern-Volmer plot of different concentrations of Fe^{3+} exist of **NLMOF-1** in ethanol; (b) Stern-Volmer plot of different concentrations of Cr^{3+} exist of **NLMOF-1** in ethanol

Fig. S35 The recyclability of the quenching ability of NLMOF-1 immersed in DMA and in the presence of 0.01 M aqueous solution of Fe^{3+} ions

Fig. S36 The PXRD patterns of NLMOF-1 treated with Fe^{3+} and MnO_4^- solution in DMA

Fig. S37 N₂ adsorption of NLMOF-1 before and after sensing experiments. Fig. S38 Fluorescence lifetimes of (a) NLMOF-1 and (b) NLMOF-1@Fe³⁺(20μ L, 0.01mol/L).

Compound	NLMOF-1	NLMOF-2
Empirical formula	$C_{162}H_{99}Cd_{4.25}O_{24}$	$C_{108}Cd_2O_{16}KH_{67}$
Formula weight	2879.1499	1884.51
Temperature	190(2)	190(2)
Crystal system	monoclinic	tetragonal
Space group	C2/c	P4 ₃ 2 ₁ 2
<i>a</i> (Å)	17.9028(5)	10.0200(5)
<i>b</i> (Å)	38.1443(11)	10.0200(5)
<i>c</i> (Å)	31.7645(9)	88.189(4)
α()	90	90
β ()	98.922(2)	90
γ(⁹	90	90
$V(\text{\AA}^3)$	21429.2(11)	8854.2(10)
Ζ	4	4
$D(g/cm^3)$	0.892	1.414
$Mu(mm^{-1})$	2.510	3.269
$F(0 \ 0 \ 0)$	5868.0	3832.0
Unique reflections	17720	7054
Observed reflections	147613	92511
R _{int}	0.1175	0.1873
$R_1, wR_2 [I > 2\sigma (I)]$	$R_1 = 0.0878, wR_2 = 0.2326$	$R_1 = 0.1182, wR_2 = 0.2915$
R_1 , wR_2 (all data)	$R_1 = 0.1537, wR_2 = 0.2632$	$R_1 = 0.1844, wR_2 = 0.3252$
Goodness-of-fit on F^2	1.184	1.168

 Table S1. Selected crystallographic data and structure refinement for compounds

 NLMOF-1 and NLMOF-2

NLMOF-1					
Cd3-O(1_2)	1.681(16)	O(2_2)-Cd4-O(4_2)#3	172.5(4)		
Cd3-O(3_1)#2	2.295(8)	O(3_2)#2-Cd4-O(4_2)#2	55.1(2)		
Cd3-O(3_2)#3	2.448(9)	O(3_2)#3-Cd4-O(4_2)#2	91.9(2)		
Cd3-O(7_1)	2.481(9)	O(2_2)#4-Cd4-O(4_2)#2	172.5(4)		
Cd4-O(3_2)#2	2.346(5)	O(2_2)-Cd4-O(4_2)#2	86.8(4)		
Cd4-O(3_2)#3	2.346(5)	O(4_2)#3-Cd4-O(4_2)#2	85.8(3)		
Cd4-O(2_2)#4	2.388(16)	O(3_1)#5-Cd2-O(8_1)#6	97.2(2)		
Cd4-O(2_2)	2.388(16)	O(3_1)#5-Cd2-O(2_1)	140.7(2)		
Cd4-O(4_2)#3	2.407(6)	O(8_1)#6-Cd2-O(2_1)	93.1(2)		
Cd4-O(4_2)#2	2.407(6)	O(3_1)#5-Cd2-O(6_1)#7	94.5(2)		
Cd2-O(3_1)#5	2.225(5)	O(8_1)#6-Cd2-O(6_1)#7	147.2(2)		
Cd2-O(8_1)#6	2.230(6)	O(2_1)-Cd2-O(6_1)#7	97.0(2)		
Cd2-O(2_1)	2.248(6)	O(3_1)#5-Cd2-O(5_1)#7	121.48(19)		
Cd2-O(6_1)#7	2.280(5)	O(8_1)#6-Cd2-O(5_1)#7	92.6(2)		
Cd2-O(5_1)#7	2.428(6)	O(2_1)#6-Cd2-O(5_1)#7	95.6(2)		
Cd2-O(1_1)	2.594(7)	O(6_1)#7-Cd2-O(5_1)#7	55.4(2)		
Cd1-O(5_1)#9	2.408(6)	O(3_1)#5-Cd2-O(1_1)	87.1(2)		
Cd1-O(5_1)#10	2.408(6)	O(8_1)#6-Cd2-O(1_1)	116.6(2)		
Cd1-O(8_1)#11	2.471(7)	O(2_1)-Cd2-O(1_1)	54.7(2)		
Cd1-O(8_1)#7	2.471(7)	O(6_1)-Cd2-O(1_1)	94.5(2)		
Cd1-O(4_1)#12	2.481(7)	O(5_1)#7-Cd2-O(1_1)	137.1(2)		
Cd1-O(4_1)	2.481(7)	O(5_1)#9-Cd1-O(5_1)#10	165.3(4)		
O(1_2)-Cd3-O(3_1)#2	152.1(9)	O(5_1)#9-Cd1-O(8_1)#11	103.8(2)		
O(1_2)-Cd3-O(3_2)#3	104.5(6)	O(5_1)#10-Cd1-O(8_1)#11	87.4(2)		
O(3_1)#2-Cd3-O(3_2)#3	83.0(3)	O(5_1)#9-Cd1-O(8_1)#7	87.4(2)		
O(1_2)-Cd3-O(7_1)	105.2(6)	O(5_1)#10-Cd1-O(8_1)#7	103.8(2)		
O(3_1)#2-Cd3-O(7_1)	81.7(3)	O(8_1)#11-Cd1-O(8_1)#7	81.3(3)		
O(3_2)#3-Cd3-O(7_1)	142.0(6)	O(5_1)#9-Cd1-O(4_1)#12	92.1(2)		
O(3_2)#2-Cd4-O(3_2)#3	136.8(3)	O(5_1)#10-Cd1-O(4_1)#12	80.4(2)		
O(3_2)#2-Cd4-O(2_2)#4	124.1(5)	O(8_1)#11-Cd1-O(4_1)#12	79.8(2)		
O(3_2)#3-Cd4-O(2_2)#4	84.8(4)	O(8_1)#7-Cd1-O(4_1)#12	160.4(3)		
O(3_2)#2-Cd4-O(2_2)	84.8(4)	O(5_1)#9-Cd1-O(4_1)	80.4(2)		
O(3_2)#2-Cd4-O(2_2)	124.1(5)	O(5_1)#10-Cd1-O(4_1)	92.1(2)		
O(2_2)#-Cd4-O(2_2)	100.6(8)	O(8_1)#11-Cd1-O(4_1)	160.4(3)		
O(3_2)#2-Cd4-O(4_2)#3	91.9(2)	O(8_1)#7-Cd1-O(4_1)	79.8(2)		
O(3_2)#3-Cd4-O(4_2)#3	55.1(2)	O(4_1)#12-Cd1-O(4_1)	119.5(3)		
O(2_2)#4-Cd4-O(4_2)#3	86.8(4)				
#2 -1/2+X,-1/2+Y,+Z #3 1/2-X,-1/2+Y,1/2-Z #4 -X,+Y,1/2-Z #5 +X,2-Y,1/2+Z #6					
1/2+X,3/2-Y,1/2+Z #7 1/2+X,1/2+Y,+Z #9 1/2+X,3/2-Y,-1/2+Z #10 3/2-X,3/2-Y,1-Z					
#11 3/2-X,1/2+Y,1/2-Z #12 2-X,+Y,1/2-Z					

Table S2. Selected bond lengths (Å) and bond angles ($^{\circ}$) for NLMOF-1

2.882(17)	O(1)#3-K(I)-O(5)#7	127.0(4)		
3.23(2)	O(4)-K(I)-O(4)#5	66.5(8)		
3.23(2)	O(5)#7-K(I)-O(4)#5	47.2(4)		
3.14(2)	O(5)#6-K(I)-O(4)#5	71.0(5)		
3.14(2)	O(5)#6-K(I)-O(4)	47.2(4)		
2.70(2)	O(5)#7-K(I)-O(4)	71.0(5)		
2.70(2)	O(5)#6-K(I)-O(5)#7	106.1(7)		
2.375(16)	O(7)#10-K(I)-O(1)#4	68.3(5)		
2.381(17)	O(7)#11-K(I)-O(1)#3	68.3(5)		
2.21(2)	O(7)#10-K(I)-O(1)#3	87.3(6)		
2.165(17)	O(7)#11-K(I)-O(1)#4	87.3(6)		
2.325(19)	O(7)#10-K(I)-O(4)	130.2(5)		
2.36(2)	O(7)#10-K(I)-O(4)#5	126.5(6)		
147.4(8)	O(7)#11-K(I)-O(4)	126.5(6)		
73.6(5)	O(7)#11-K(I)-O(4)#5	130.2(5)		
73.6(5)	O(7)#11-K(I)-O(5)#7	161.8(6)		
138.8(6)	O(7)#11-K(I)-O(5)#6	86.7(5)		
138.8(6)	O(7)#10-K(I)-O(5)#6	161.8(6)		
74.7(5)	O(7)#10-K(I)-O(5)#7	86.7(5)		
74.7(5)	O(7)#11-K(I)-O(7)#10	84.3(9)		
127.0(4)				
#3 -1+Y,1+X,-Z #4 -1/2-X,1/2+Y,-1/4-Z #5 -1/2+Y,1/2-X,1/4+Z #6 +Y,1+X,-Z;				
	2.882(17) 3.23(2) 3.23(2) 3.14(2) 3.14(2) 2.70(2) 2.70(2) 2.375(16) 2.381(17) 2.21(2) 2.165(17) 2.325(19) 2.36(2) 147.4(8) 73.6(5) 138.8(6) 73.6(5) 138.8(6) 74.7(5) 127.0(4) 1/2+Y,-1/4-Z #5	2.882(17) $O(1)$ #3-K(I)-O(5)#73.23(2) $O(4)$ -K(I)-O(4)#53.23(2) $O(5)$ #7-K(I)-O(4)#53.14(2) $O(5)$ #6-K(I)-O(4)2.70(2) $O(5)$ #6-K(I)-O(4)2.70(2) $O(5)$ #6-K(I)-O(5)#72.375(16) $O(7)$ #10-K(I)-O(1)#42.381(17) $O(7)$ #11-K(I)-O(1)#32.21(2) $O(7)$ #10-K(I)-O(1)#32.165(17) $O(7)$ #10-K(I)-O(1)#42.325(19) $O(7)$ #10-K(I)-O(4)2.36(2) $O(7)$ #10-K(I)-O(4)73.6(5) $O(7)$ #11-K(I)-O(4)#573.6(5) $O(7)$ #11-K(I)-O(5)#7138.8(6) $O(7)$ #10-K(I)-O(5)#674.7(5) $O(7)$ #11-K(I)-O(5)#774.7(5) $O(7)$ #11-K(I)-O(7)#10127.0(4) $1/2$ +Y,-1/4-Z		

Table S3. Selected bond lengths(Å) and bond angles($^{\circ}$) for NLMOF-2

Fig. S1 Topology graph of NLMOF-1

Fig. S2 Topology graph of NLMOF-2

Fig. S3 Powder X-ray diffraction pattern of NLMOF-1 and NLMOF-2

Fig. S4 (a) TG curve of NLMOF-1; (b) TG curve of NLMOF-2

Fig. S5 The solid state flurescence spectrum of H_4 tcbpe ligand (a) and NLMOF-1 (b)

Fig. S6 Emission spectra of NLMOF-1 in 10mM different cations at 430 nm in H₂O

Fig. S7 Emission spectra of NLMOF-1 in 10mM different anions at 430 nm in H₂O

Fig. S8 Fluorescence intensity of NLMOF-1 when MnO_4^- coexists with other anions in H_2O

Fig. S9 Emission spectra of NLMOF-1 dispersed in H_2O with different concentrations of MnO_4^-

Fig. S10 Stern-Volmer plot of different concentrations of MnO_4^- exist in H_2O of NLMOF-1

Fig. S11 (a) Excitation spectra of NLMOF-1 in aqueous solution; (b) UV-vis adsorption spectra of $Na_x(A)$ in aqueous solution

Fig. S12 Emission spectra of NLMOF-1 in 10mM different cations at 430 nm in DMF

Fig. S13 Fluorescence intensity of NLMOF-1 when Fe^{3+} coexists with other cations in DMF

Fig. S14 Emission spectra of NLMOF-1 dispersed in DMF with different concentrations of Fe^{3+}

Fig. S15 Stern-Volmer plot of different concentrations of Fe³⁺ exist in NLMOF-1

Fig. S16 Emission spectra of NLMOF-1 in 10mM different anions at 430 nm in DMF

Fig. S17 (a) Emission spectra of NLMOF-1 dispersed in DMF with different concentrations of $Cr_2O_7^{2-}$; (b) Emission spectra of NLMOF-1 dispersed in DMF with different concentrations of MnO_4^{-1}

Fig. S18 (a) Stern-Volmer plot of different concentrations of $Cr_2O_7^{2-}$ exist of **NLMOF-1** in DMF; (b) Stern-Volmer plot of different concentrations of MnO_4^- exist of **NLMOF-1** in DMF

Fig. S19 (a) Excitation spectra of **NLMOF-1** in DMF solution; (b) UV-vis adsorption spectra of $M(NO_3)_x$ in DMF solution

Fig. S20 Emission spectra of NLMOF-1 in 10mM different cations at 430 nm in acetonitrile

Fig. S21 Fluorescence intensity of NLMOF-1 when Fe^{3+} coexists with other cations in acetonitrile

Fig. S22 Emission spectra of NLMOF-1 dispersed in acetonitrile with different concentrations of Fe^{3+}

Fig. S23 Emission spectra of NLMOF-1 in 10mM different anions at 430 nm in acetonitrile

Fig. S24 Fluorescence intensity of NLMOF-1 when MnO_4^- coexists with other anions in acetonitrile

Fig. S25 Emission spectra of NLMOF-1 dispersed in acetonitrile with different concentrations of MnO_4^-

Fig. S26 (a) Stern-Volmer plot of different concentrations of Fe^{3+} exist of **NLMOF-1** in acetonitrile; (b) Stern-Volmer plot of different concentrations of MnO_4^- exist of **NLMOF-1** in acetonitrile

Fig. S27 Emission spectra of NLMOF-1 in 10mM different cations at 430 nm in methanol

Fig. S28 Emission spectra of NLMOF-1 in 10mM different anions at 430 nm in methanol

Fig. S29 (a) Emission spectra of NLMOF-1 dispersed in methanol with different concentrations of Fe^{3+} ; (b) Emission spectra of NLMOF-1 dispersed in methanol with different concentrations of Cr^{3+}

Fig. S30 (a) Stern-Volmer plot of different concentrations of Fe^{3+} exist of **NLMOF-1** in methanol; (b) Stern-Volmer plot of different concentrations of Cr^{3+} exist of **NLMOF-1** in methanol

Fig. S31 Emission spectra of NLMOF-1 in 10mM different cations at 430 nm in ethanol

Fig. S32 Emission spectra of NLMOF-1 in 10mM different anions at 430 nm in ethanol

Fig. S33 (a) Emission spectra of NLMOF-1 dispersed in ethanol with different concentrations of Fe^{3+} ; (b) Emission spectra of NLMOF-1 dispersed in ethanol with different concentrations of Cr^{3+}

Fig. S34 (a) Stern-Volmer plot of different concentrations of Fe^{3+} exist of **NLMOF-1** in ethanol; (b) Stern-Volmer plot of different concentrations of Cr^{3+} exist of **NLMOF-1** in ethanol

Fig. S35 The recyclability of the quenching ability of NLMOF-1 immersed in DMA and in the presence of 0.01 M aqueous solution of Fe^{3+} ions

Fig. S36 The PXRD patterns of NLMOF-1 treated with Fe^{3+} and MnO_4^- solution in DMA

Fig. S37 N_2 adsorption of NLMOF-1 before and after sensing experiments.

Fig. S38 Fluorescence lifetimes of (a) NLMOF-1 and (b) NLMOF-1@Fe³⁺(20μ L, 0.01mol/L).