Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Materials

Reduction of cupper oxides by carbon monoxide at applied potential

Nadezhda V. Dokhlikova, Andrey K. Gatin, Sergey Yu. Sarvadii, Sergey A. Ozerin, Vasiliy A. Kharitonov, Boris R. Shub, Maxim V. Grishin and Sergey V. Doronin

S1. Potential of charged Cu₂O and CuO slabs

Fig. S1. Dependence of the applied potential calculated based on the Fermi level shift on the charge of $Cu_2O(A)$ and CuO(Fm3m)(B) slabs.

Fig. S2. Partial DOS для Cu₂O и CuO (Fm3m).

Fig. S3. Total DOS of copper oxides.

S3. CO interaction with cuprum oxides

Oxide	E, V	Cu1			Cu2			01			02		
		E _{bind}	E _{reac1}	E _{reac2}	E _{bind}	E _{reac1}	E _{reac2}	E _{bind}	E _{reac1}	E _{reac2}	Ebind	E _{reac1}	E _{reac2}
Cu ₂ O	-1	-0.574	0.567	0.693	-1.825	-0.684	-0.558	-1.492	-0.351	-0.225	-0.469	0.672	0.798
	0	-2.308	-1.011	-0.891	-2.268	-0.970	-0.851	-1.404	-0.107	0.013	-1.000	0.298	0.417
	1	-0.576	0.566	0.683	-1.785	-0.643	-0.526	-0.275	0.868	0.984	-0.461	0.682	0.798
CuO Fm3m	-1	-0.361	1.201	0.971	-0.608	0.954	0.724	-1.732	-0.170	-0.400	-0.607	0.955	0.725
	0	-0.362	1.188	0.922	-0.640	0.911	0.644	-1.735	-0.185	-0.451	-1.734	-0.183	-0.450
	1	-0.363	1.201	1.017	-0.614	0.950	0.766	-1.749	-0.185	-0.369	-0.303	1.260	1.076
	-1	-0.121	1.267	1.014	-0.121	1.267	1.014	-1.503	-0.115	-0.367	-0.452	0.936	0.684
C2c	0	-0.871	1.271	1.014	-1.205	0.938	0.681	-2.257	-0.114	-0.371	-1.206	0.937	0.680
	1	-0.127	1.265	1.005	-1.548	-0.643	-0.526	-1.517	-0.125	-0.384	-0.462	0.930	0.670
Cccm	-1	0.063	1.378	1.205	-0.133	1.181	1.008	-1.399	-0.084	-0.257	-0.133	1.181	1.008
	0	-0.805	0.644	0.229	-1.048	0.401	-0.014	-2.186	-0.737	-1.152	-1.048	0.402	-0.014
	1	0.053	1.380	1.202	-0.144	1.183	1.005	-1.414	-0.087	-0.264	-0.144	1.183	1.006

Tab. S1. Binding energies (E_{bind}) of CO and reduction reaction energy (E_{reac}) on sites (Cu1, Cu2, O1, and O2) of copper oxides (Cu₂O and CuO Fm3m, C2/c, and Cccm).

Fig. S4. Energies of the CO molecule rotation at distances $\mathbf{r} = 2$ and 4 Å from the Cu2 site on the Cu₂O and CuO (Fm3m) surfaces.

Oxide		E = -1 V				E = 0 V				E = +1 V			
	r, A	α = 45°	90°	135°	180°	45°	90°	135°	180°	45°	90°	135°	180°
	2	0.369	1.436	1.357	1.253	0.370	1.438	1.375	1.271	0.370	1.441	1.378	1.275
Cu2O	4	0.009	0.026	0.022	0.019	0.011	0.032	0.032	0.032	0.013	0.038	0.042	0.043
	6	-0.0011	-0.0035	-0.0080	-0.0088	0.0006	0.0021	0.0018	0.0027	0.0022	0.0075	0.0081	0.0133
	8	-1.70E-03	-5.29E-03	-9.75E-03	-1.04E-02	-6.35E-05	3.68E-04	-3.05E-05	1.04E-03	1.51E-03	5.71E-03	9.04E-03	1.16E-02
	2	0.261	0.925	0.774	0.755	0.267	0.930	0.778	0.755	0.273	0.935	0.783	0.755
CuO	4	-0.007	0.034	0.011	0.015	-0.006	0.037	0.015	0.020	-0.005	0.040	0.020	0.026
(Fm3m)	6	-0.0006	0.0028	-0.0021	-0.0028	0.0001	0.0052	0.0021	0.0021	0.0008	0.0077	0.0064	0.0071
	8	-6.90E-05	-4.96E-04	-3.37E-03	-4.72E-03	6.17E-04	1.88E-03	7.56E-04	1.44E-04	1.37E-03	4.42E-03	5.04E-03	5.12E-03

Tab. S2. Energy of the CO molecule rotation by the angle α on the copper oxides surface. **r** is the distance between the carbon (CO) and Cu2 at $\alpha < 90^{\circ}$, oxygen (CO) and Cu2 at $\alpha > 90^{\circ}$.

S4. Reaction of CO with cumprum oxides

Tab. S3. CO binding energies (E_{bind}) and reduction reaction energy (E_{reac}) on the Cu1, Cu2, O1, and O2 sites of copper oxides (Cu₂O, CuO Fm3m, C2/c, and Cccm).

Oxide	E, V	Cu1			Cu2			01			02		
		E _{bind}	E _{reac1}	E _{reac2}	E _{bind}	E _{reac1}	E _{reac2}	E _{bind}	E _{reac1}	E _{reac2}	E _{bind}	E _{reac1}	E _{reac2}
Cu₂O	-1	-0.574	0.567	0.693	-1.825	-0.684	-0.558	-1.492	-0.351	-0.225	-0.469	0.672	0.798
	0	-2.308	-1.011	-0.891	-2.268	-0.970	-0.851	-1.404	-0.107	0.013	-1.000	0.298	0.417
	1	-0.576	0.566	0.683	-1.785	-0.643	-0.526	-0.275	0.868	0.984	-0.461	0.682	0.798
CuO Fm3m	-1	-0.361	1.201	0.971	-0.608	0.954	0.724	-1.732	-0.170	-0.400	-0.607	0.955	0.725
	0	-0.362	1.188	0.922	-0.640	0.911	0.644	-1.735	-0.185	-0.451	-1.734	-0.183	-0.450
	1	-0.363	1.201	1.017	-0.614	0.950	0.766	-1.749	-0.185	-0.369	-0.303	1.260	1.076
	-1	-0.121	1.267	1.014	-0.121	1.267	1.014	-1.503	-0.115	-0.367	-0.452	0.936	0.684
C2c	0	-0.871	1.271	1.014	-1.205	0.938	0.681	-2.257	-0.114	-0.371	-1.206	0.937	0.680
	1	-0.127	1.265	1.005	-1.548	-0.643	-0.526	-1.517	-0.125	-0.384	-0.462	0.930	0.670
Cccm	-1	0.063	1.378	1.205	-0.133	1.181	1.008	-1.399	-0.084	-0.257	-0.133	1.181	1.008
	0	-0.805	0.644	0.229	-1.048	0.401	-0.014	-2.186	-0.737	-1.152	-1.048	0.402	-0.014
	1	0.053	1.380	1.202	-0.144	1.183	1.005	-1.414	-0.087	-0.264	-0.144	1.183	1.006

Fig. S5. Bond length changes for Cu₂O (**A**) and CuO Fm3m (**B**) copper oxides at potentials ± 1 V. Notation: O_{sub} is the subsurface oxygen lying below O2, d_{Cu-Cu} is the distance between the layers formed by the copper atoms; the other designations correspond to **Fig. 1** and **Fig. S6**.

Fig. S6. Bonds from Fig. S5 for Cu₂O (A) and CuO Fm3m (B) copper oxides.

	Distances, Å								
	-1 V	1 V 0 V							
Cu1-Cu2	2.670	2.806	2.739						
Cu1-Cu1	2.711	2.884	2.795						
Cu2-Cu2	5.340	5.610	5.478						
Cu1-O1	1.815	1.811	1.812						
Cu1-O2	1.850	1.847	1.846						
01-02	3.664	3.656	3.658						
dCu-Cu	2.897	2.691	2.812						

Tab. S4. Bond length changes for Cu_2O at potentials $\pm 1V$.

	Distances, Å							
	-1 V	0 V	+1 V					
Cu1-Cu2	3.118	3.146	3.128					
Cu1-Cu1	2.787	2.791	2.787					
Cu2-Cu2	3.117	2.790	3.128					
Cu1-O1	1.855	1.856	1.859					
Cu1-O2	1.879	1.881	1.889					
Cu2-O2	1.836	1.839	1.847					
01-02	2.486	2.486	2.505					
Cu2-Osub	2.159	2.149	2.130					
dCu-Cu	2.794	2.903	2.771					

Tab. S5. Bond length changes for CuO Fm3m copper oxides at potentials ± 1 V.