Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

A unique covalently-linked pyridine-tetrathiafulvalene as stimuli-sensitive sensor for specific, selective optical and electrochemical detection of Pb²⁺

Wenhao Zhang,^[a] Sagrario Pascual,^[a] Stéphanie Legoupy,^[b] Abdelkrim El-Ghayoury,^{*[b]} Sandie Piogé^{*[a]}

[a]	Title(s), Initial(s), Surname(s) of Author(s) including Corresponding Author(s)
	Institut des Molécules et Matériaux du Mans, IMMM UMR 6283 CNRS
	Le Mans Université
	Avenue Olivier Messiaen, Le Mans 72085 Cedex 9, France
	E-mail: sandie.pioge@univ-lemans.fr
[b]	Title(s), Initial(s), Surname(s) of Author(s)
	Univ Angers, CNRS, MOLTECH-Anjou, SFR Matrix
	2 Bd Lavoisier
	F-49000, Angers, France
	E-mail: abdelkrim.elghayoury@univ-angers.fr

Table of contents

Fig. S1 : ¹ H NMR spectrum in CDCl ₃ of A	p.2
Fig. S2 : ¹³ C NMR spectrum in CDCl ₃ of A	p.3
Fig. S3 : ¹ H NMR spectrum in CDCl ₃ of dyad 1	p.4
Fig. S4 : ¹³ C NMR spectrum in CDCl ₃ of dyad 1	p.5
Fig. S5 : Mass spectrum of dyad 1	p.5
Fig. S6 : CV experiment of dyad 1 (10 ⁻³ M) in CH ₂ Cl ₂ /CH ₃ CN (1/1, v/v); 100 mV/s, nBu_4PF_6	p.6
(10 ⁻¹ M), vs Ag/AgCl, (vs Fc/Fc ⁺)	
Fig. S7 : UV-visible titration of dyad 1 (C = 1.10^{-5} M) in CH ₂ Cl ₂ /CH ₃ CN (1/1) by Fe ²⁺	p.6
solution (Fe(ClO ₄) ₂ , 4.10 ⁻³ M in CH ₂ Cl ₂ /CH ₃ CN (1/1))	
Fig. S8 : UV-visible titration of dyad 1 (C = 1.10^{-5} M) in CH ₂ Cl ₂ /CH ₃ CN (1/1) by Zn ²⁺	p.7
solution (Zn(ClO ₄) ₂ , 4.10 ⁻³ M in CH ₂ Cl ₂ /CH ₃ CN (1/1))	
Fig. S9 : UV-visible titration of dyad 1 (C = 1.10^{-5} M) in CH ₂ Cl ₂ /CH ₃ CN (1/1) by Cd ²⁺	p.7
solution (Cd(ClO ₄) ₂ , 4.10 ⁻³ M in CH ₂ Cl ₂ /CH ₃ CN (1/1))	
Fig. S10 : Further study of UV-visible titration of dyad 1 (10^{-5} M) in CH ₂ Cl ₂ /CH ₃ CN ($1/1$,	p.8
v/v) in presence of Pb(ClO ₄) ₂	
Fig. S11 : CV spectra of dyad 1 ($C_0 = 10^{-3}$ mol.L ⁻¹ in CH ₂ Cl ₂ /CH ₃ CN (1/1 v/v)) in presence	p.8
of $Zn(ClO_4)_2$ or $Fe(ClO_4)_2$, speed of tension variation = 100 mV.s ⁻¹ , Bu ₄ NPF ₆ (10 ⁻¹ mol.L ⁻¹),	
Ag/AgCl, vs Fc/Fc ⁺	

Fig. S1. ¹H NMR spectrum in CDCl₃ of A.

Fig. S2. ¹³C NMR spectrum in CDCl₃ of **A**.

Fig. S3. ¹H NMR spectrum in CDCl₃ of dyad 1.

Fig. S6. CV experiment of dyad 1 (10⁻³ M) in CH₂Cl₂/CH₃CN (1/1, v/v); scan rate = 100 mV/s, nBu_4PF_6 (10⁻¹ M), Ag/AgCl, vs Fc/Fc⁺).

Fig. S7. UV-visible titration of dyad 1 (C = 1.10^{-5} M) in CH₂Cl₂/CH₃CN (1/1) by Fe²⁺ solution (Fe(ClO₄)₂, 4.10^{-3} M in CH₂Cl₂/CH₃CN (1/1)).

Fig. S8. UV-visible titration of dyad 1 (C = 1.10^{-5} M) in CH₂Cl₂/CH₃CN (1/1) by Zn²⁺ solution (Zn(ClO₄)₂, 4.10^{-3} M in CH₂Cl₂/CH₃CN (1/1)).

Fig. S9. UV-visible titration of dyad 1 (C = 1.10^{-5} M) in CH₂Cl₂/CH₃CN (1/1) by Cd²⁺ solution (Cd(ClO₄)₂, 4.10^{-3} M in CH₂Cl₂/CH₃CN (1/1)).

Fig. S10. Further study of UV-visible titration of dyad **1** (10⁻⁵ M) in CH₂Cl₂/CH₃CN (1/1, v/v) in presence of Pb(ClO₄)₂.

Fig. S11. CV spectra of dyad **1** ($C_0 = 10^{-3} \text{ mol.L}^{-1}$ in CH₂Cl₂/CH₃CN (1/1 v/v)) in presence of Zn(ClO₄)₂ (left spectrum) or Fe(ClO₄)₂ (right spectrum), scan rate = 100 mV.s⁻¹, Bu₄NPF₆ (10⁻¹ mol.L⁻¹), Ag/AgCl, vs Fc/Fc⁺.