Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Facile Synthesis of Cross-linked Ag-CdS Nanoshell Morphology for Highly Efficient Photocatalytic Activity

Shubhranshu Bhandari^{1,*,#}, Mir Sahidul Ali^{2,*,#}, Debayan Roy^{3,*}, Suresh Saini^{4,*}, Mir Intaj Ali⁵, Mir Sahanur Ali^{2,6}

¹ College of Engineering, Mathematics and Physical Sciences, Environment and Sustainability Institute, University of Exeter, Penryn Campus, United Kingdom, TR10 9FE

² Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata - 700 009, West Bengal, India

³ Independent Researcher, 265, Nripen Sarkar Road, Sahid Nagar, Kanchrapara, North-24 Parganas - 743145, India

⁴ Centre for Nano and Material Sciences (CNMS), Jain Global Campus, JAIN (Deemed-to-be University), Bangalore - 562112 India

⁵ Central Institute of Petrochemicals Engineering and Technology (CIPET): Institute of Petrochemicals Technology (IPT) –Bhubaneswar, B-25, CNI complex, Patia, Odisha - 751024, India.

⁶ Centre for Research in Nanoscience and nanotechnology, University of Calcutta, Kolkata - 700106, West Bengal, India

* These authors have equal contributions.

[#]Corresponding authors: <u>s.bhandari@exeter.ac.uk</u>, <u>shubhranshu0094@gmail.com</u>, <u>mir.sahidul@gmail.com</u>

Table S1. The elemental weight percentage of Ag-CdS obtained by energy-dispersive X-ray	
Elements	Weight%
S	48.44
Ag	11.86
Cd	39.70
Totals	100.00

Figure S1. (a-b) TEM images of Ag nanoparticles, (c) SEM image of the Ag nanoparticles, respectively

Figure S2. EIS Nyquist plots of CdS and Ag-CdS nanostructures with circuit diagram at the inset

Figure S3. Repeated experiments of photocatalytic degradation of MB and R6G in the presence of Ag/CdS composite after the first (Blue) and fourth (Orange) round, respectively

Figure S4. (a-b) Visible light photodegradation of MB and R6G dyes in the presence of CdS nanostructures, respectively

Figure S5. XRD pattern comparison for Ag/CdS heterostructure before dye degradation and after dye degradation for the fourth cycle

Figure S6. TOC test for mineralization rate of MB and R6G by ultra-violet photooxidation method with the Ag-CdS catalyst

