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Text S1 Materials

Bagasse (Sugar Mill, Guangxi, China), titanium butoxide (AR), ciprofloxacin (AR), tetracycline (AR), and triethylene
diamine (DABCO, AR) were provided by Macklin. Ethanol (AR) was provided by KESHI. Methanol (HPLC) and
acetonitrile (HPLC) were provided by Fisher Chemical. Potassium bromate (AR), sodium sulfate anhydrous (AR),
tert-Butyl alcohol (TBA, AR), ethylenediaminetetraacetic acid disodium salt (EDTA-2Na, AR), oxalic acid dihydrate
(AR), phosphoric acid (HPLC) were respectively provided by several chemical plants, Tianjin, China. Ultrapure

water obtained with Milli-Q® equipment was used in this study.

Text S2 Synthesis of photocatalysts

2 g bagasse, 100 mL ultrapure water, and 10 mL absolute ethanol were added to a 500 mL beaker, the bagasse
was filtered after sonication for 20 min, 150 mL ultrapure water, and 60 mL absolute ethanol, and placed on a
magnetic stirrer. While vigorously stirring, 6 mL of titanium butoxide was added dropwise within 4 min, and then
stirring vigorously for 30 min, the agitated bagasse and part of the solution were poured into a 100 mL Teflon-
lined stainless steel autoclave and hydrothermally heated at 160°C for 24 h. After the hydrothermal material was
suction filtered and rinsed three times with water and ethanol, it was moved to an oven for drying at 80°C. The
dried material was transferred to a corundum boat, kept in a tube furnace (with hydrogen-argon mixture) at
400°C for 3 h (heating rate 10°C/min), and then cooled down naturally. The obtained material was named H,/T-
BC.

Add 150 mL ultrapure water and 60 mL absolute ethanol, and place on a magnetic stirrer. While vigorously
stirring, 6 mL of titanium butoxide was added dropwise within 4 min, after stirring vigorously for 30 min, the part
of the solution was poured into a 100 mL Teflon-lined stainless steel autoclave and hydrothermally heated at
160°C for 24 h. After the hydrothermal material was suction filtered and rinsed three times with water and
ethanol, it was moved to an oven for drying at 80°C. The dried material was moved into a corundum boat, kept in
a tube furnace (with hydrogen-argon mixture) at 400°C for 3 h (heating rate 10°C/min), and then cooled down
naturally. The obtained material was named H,/T.

2 g bagasse, 100 mL ultrapure water, and 10 mL absolute ethanol were added to a 500 mL beaker, the bagasse
was filtered off after sonicating for 20 min, 150 mL ultrapure water and 60 mL absolute ethanol, and placed on a
magnetic stirrer. After stirring vigorously for 30 min, the stirred bagasse and a portion of the solution were
transferred to a 100 mL Teflon-lined stainless steel autoclave and hydrothermally heated at 160°C for 24 h. After
the hydrothermal material was suction filtered and rinsed three times with water and ethanol, it was transferred
to an oven for drying at 80°C. The dried material was moved into a corundum boat, kept in a tube furnace (with
hydrogen-argon mixture) at 400°C for 3 h (heating rate 10°C/min), and then cooled down naturally. The obtained

material was named H,/BC.

Text S3 Characterization and Photoelectrochemical measurements
Scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and high-resolution transmission

electron microscope (HRTEM) were performed on Zeiss Sigma 300, smartedx, and JEOL JEM-2800. The X-ray
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diffraction (XRD) patterns of the samples were obtained using Bruker D8 Discover in the 26 range of 5-90° and at
a scan rate of 5°/min (Cu Ka source irradiation). Fourier transform infrared spectrometer (FTIR) was performed
on Shimadzu IRTracer-100 (400 - 400nm). X-ray photoelectron spectroscopy (XPS) was performed using Thermo
Scientific K-Alpha with an anode of Al Ka radiation (1486.6 eV) X-ray sources. UV-vis diffuse reflectance spectra
(UV-vis DRS) were obtained with Shimadzu UV-3600Plus. Wavelength: 200 — 1000 nm. Tauc plot is mainly based
on the formula proposed by Tauc, Davis and Mott et al.1: (ahv)Y/" = B(hv-Eg), where a is absorption coefficient, h
is Planck-constant, v is frequency, B is constant, Eg is the bandgap width of semiconductor, Exponential n is
directly related to the type of semiconductor, direct bandgap n=1/2, indirect bandgap n=2. The type of
transitions of H,/T and H,/T-BC are indirect, n=2. The surface charge (Zeta) was measured using zeta potential
analyzer (NanoBrook Omni, Brookhaven, US). The measurements of Mott-Schottky plot (M-S), transient
photocurrent (I-t), and electrochemical impedance spectroscope (EIS) were performed using electrochemical
workstation (Chenhua, CHI760E China).

The sample preparation method is as follows.

SEM: An appropriate amount of H,/BC and H,/T-BC was glued onto the conductive adhesive and sprayed with
gold for 45 s (platinum target) using an Oxford Quorum SC7620 sputtering coater at 10 mA. TEM: An appropriate
amount of H,/T-BC was taken for sample preparation using a copper mesh (microgrid carbon film). XRD: H,/T,
H,/BC, and H,/T-BC were milled and pressed separately. FTIR: H,/T, H,/BC, and H,/T-BC were mixed and ground
separately with potassium bromide, and the ratio of sample to potassium bromide was approximately 1: 100. XPS:
H,/BC and H,/T-BC were pressed separately and attached to the sample disk. UV-vis DRS: powder samples
diluted with a non-absorbing material (BaSO,). Zeta: An equal amount of H,/T-BC was weighed and transferred
into a 50 mL cuvette, diluted with water and adjusted to pH 2, 4, 5, 7, 8 and 10 respectively. Ultrasonication was
used to make the material fully dispersed in the solution, and after a period of natural settling, the supernatant
was taken for determination. M-S, I-t, and EIS: Weigh 10 mg of H,/T, H,/T-BC powder samples were dispersed in
1 mL of ethanol, then add 20 uL of 5 % Nafion ethanol solution, sonicate for 30 min to form a suspension and

then dispersed and coated on ITO substrate for drying.

Text S4 Photocatalytic activity

Conditions for TC determination: Mobile phase was V (0.01 mol/L oxalic acid): V (acetonitrile): V (methanol) =
7:2:1, flow rate of 0.35 mL/min, detection wavelength of 355 nm

Conditions for CIP determination: Mobile phase was V (0.025% phosphoric acid): V (acetonitrile)=87:13, the
phosphoric acid solution was prepared and adjusted to pH=3 with triethylamine, flow rate of 0.35 mL/min,

detection wavelength of 278 nm.

Text S5 XPS
The C 1s spectrum of H,/BC was fitted with three peaks. The peak at 284.73 eV was attributed to the C-C bonds

(adventitious carbon) 2, which were common in biochar. The peaks at 285.57 eV and 289.19 eV were attributed



to the C-O bonds 2 and COOH/C=0 bonds 3, respectively. The O 1s spectrum of H,/BC can be fitted with two

peaks at 531.83 eV and 533.21 eV, which were attributed to C-O bonds 2 and C=0 bonds 4, respectively.

Text S6 Zeta
The isoelectric point of TiO, was at 6.2 > 6, which showed that TiO, had a positively charged surface at pH < 6.2

and a negatively charged surface at pH > 6.2. The isoelectric point of bagasse ranged from 2.3 to 6.1 7-1°,



Tab. S1. Fukui calculation results of TC molecular.

Atoms fle) f(e) fle) Atoms fle) f(e) fle)
c1 0.0397 0.0303 0.035 c22 0.0038 0.0055 0.0046
6 0.0497 0.0199 0.0348 €20 0.072 0.014 0.043
cs 0.0456 0.0148 0.0302 025 0.0146 0.0062 0.0104
ca 0.0413 0.0011 0.0212 028 0.0197 0.0292 0.0245
c3 0.02 0.0088 0.0144 H(C1) 0.0282 0.0176 0.0229
c2 0.0059 0.0036 0.0048 H(Ce) 0.029 0.0151 0.0221
C10 0.0097 0.0333 0.0215 H(C2) 0.0298 0.0109 0.0204
c9 0.0589 0.0171 0.038 H(C8) 0.0156 0.0078 0.0117
c8 0.0062 0.0028 0.0045 H(C12) 0.003 0.0061 0.0046
c7 0.0028 0.0013 0.0021 H(C11) 0.0115 0.0119 0.0117
C14 0.045 0.0112 0.0281 H(C11) 0.0057 0.0063 0.006
c13 0.0028 0.0091 0.006 H(C15) 0.0072 0.0185 0.0129
c12 6.00E-04 0.0021 0.0013 H(031) 0.02 0.0069 0.0134
c11 0.0036 0.0057 0.0046 H(029) 0.0163 0.0099 0.0131
ci18 -1.00E-04 0.082 0.041 H(032) 0.0086 0.0266 0.0176
c17 0.0046 0.0355 0.0201 H(N24) 0.0105 0.0205 0.0155
C16 0.0094 0.0866 0.048 H(N24) 0.0049 0.0074 0.0062
15 0.0025 0.0087 0.0056 H(C21) 0.0076 0.0156 0.0116

031 0.0992 0.0228 0.061 H(C21) -0.0015 0.0066 0.0025
030 0.0283 0.0407 0.0345 H(C21) 0.0089 0.0132 0.0111
029 0.0655 0.02 0.0427 H(C22) 0.0078 0.0174 0.0126
027 0.0092 0.0987 0.0539 50(C22) 0.0015 3.00E-04 9.00E-04
032 0.0168 0.0565 0.0367 H(C22) 0.0078 0.0099 0.0089
19 0.0062 0.0033 0.0047 H(C20) 0.0104 0.0112 0.0108
N24 0.0111 0.0163 0.0137 H(C20) 0.0147 0.0041 0.0094
026 0.0321 0.0331 0.0326 H(C20) 0.0025 0.0015 0.002
N23 4.00E-04 0.0061 0.0032 H(025) 0.0115 0.0093 0.0104
c21 0.0034 0.0103 0.0068 H(028) 0.008 0.0086 0.0083

Tab. S2. Fukui calculation results of CIP molecular.

Atoms f(e) ft(e) f’le) Atoms fle) f'(e) f°le)
022 0.0387 0.0427 0.0407 c11 0.0192 0.0737 0.0465
c14 0.0094 0.0122 0.0108 021 0.076 0.0851 0.0805
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ETC (epitetracyclin)

Tab. S3. Potential intermediates in the TC photocatalytic degradation by H,/T-BC.

RSs/TPs
TPs m/z Molecular formula Supposed Structure Refs.
Pathway
g
-0, /ETC
P1 459 C22H22N209 Hydroxylation 1
-0,7/TC
P2 443 C22H21NO9 1)Hydroxylation 12
2)Ring formation
P3 431 C21H22N208 h*/ETC Demethylation 1
-0,7/TC
P4 428 C22H21NO8 Hydroxylation 12
-0,7/ETC
P5 427 C23H25N0O7 1
Aromatization
CHy NH;
,\\\\‘\ Y,
h*/P5
P6 399 C20H18N207 NH, 1

Demethylation




P7

P9

P10

P11

P13

P14

398

301

282

239

135

130

OH

T

C21H19NO7
OH
OH 0 OH Q 0
C18H2004 *
OH (e] OH (o}
C18H1803 ! ' ! I
OH (0] OH
HiCy, OH
C12H1405 @WO”
OH OH o
]
C8H603
OH (|)
HO/\/\/\/\\
C8H180

RSs/P2

Decompose

RSs/P2, P7

Disintegrated

h+
1)Dehydroxylation

2)Demethylation

RSs/P356

Ring opening

RSs/P2, P7

Disintegrated

RSs/TPs

The cleavage of TPs

12

12

13

11

12

14




Tab. S4. Potential intermediates in the TC photocatalytic degradation by H,/T-BC under acidic conditions.

RSs/TPs
TPs m/z Molecular formula Supposed Structure Refs.
Pathway
CH;y OH
M,
RSs/P3 56
P15 324 C19H1405 1
Ring opening
Tab. S5. Potential intermediates in the TC photocatalytic degradation by H,/T-BC under neutral conditions.
RSs/TPs
TPs m/z  Molecular formula Supposed Structure Refs.
Pathway
NH;
h*/ETC
P16 417 C20H20N208 n
Demethylation
h*+-0,7/ETC

1)Hydroxylation
P17 415 C20H18N208 u

2)Demethylation

\N/
HO
h+

P18 385 C21H23NO6 1)Dehydroxylation 13

2)Demethylation

OH
OH 0 OH 0
RSs/P356
P15 324 C19H1405 n
Ring opening
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OH O o]

h*/TC
Detachment of
P19 296 C18H17NO3

functional groups of TC

NH; molecule

RSs/TPs

P20 136 C9H120 The cleavage of

tetracycline

15

14

Tab. S6. Potential intermediates in the TC photocatalytic degradation by H,/T-BC under alkalinity conditions.

RSs/TPs
TPs m/z Molecular formula Supposed Structure Refs.
Pathway
h*/ETC
P16 417 C20H20N208 n
Demethylation
h*+0,/ETC
P17 415 C20H18N208 1)Hydroxylation n
2)Demethylation
h*/P4
P21 410 C22H21NO7 12
Dehydroxylation
h+
P18 385 C21H23NO6 1)Dehydroxylation 13

2)Demethylation
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h*/TC
Detachment of
P19 296 C18H17NO3 15
functional groups of TC

molecule

RSs/TPs
P20 136 C9H120 The cleavage of 14

tetracycline

Tab. S7. Potential intermediates in the CIP photocatalytic degradation by H,/T-BC.

RSs/TPs
TPs m/z Molecular formula Supposed Structure Refs.
Pathway
o ° RSs/CIP
F 1)The cleavage of the
OH
| piperazine ring
N
PL 362 C17H16FN305 L N 2)With two keto- 16
| 0 groups on the
0 piperazine ring
0 0
E
OH RSS/P].

Detachment of
P3 263 C13H11FN203 HoN N 16
functional groups of

CIP molecule

Tab. S8. Potential intermediates in the CIP photocatalytic degradation by H,/T-BC under acidic conditions.

RSs/TPs
TPs m/z Molecular formula Supposed Structure Refs.
Pathway
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F.

|
LT

or h*+10,/P1
P4 334 C16H19N305 1
o} o) Decarbonylation

OH

| OH

Tab. S9. Potential intermediates in the CIP photocatalytic degradation by H,/T-BC under neutral conditions.

RSs/TPs
TPs m/z Molecular formula Supposed Structure Refs.
Pathway
(o] o]

| OH h*+10,/CIP

N N 1)The cleavage of the

P5 344 C17H17N305 (\ 18
HN S piperazine ring
o]

2)Defluorination

o—

0 0
OH
| e
P6 316 C16H17N304 N N 18
(\ Decarbonylation
NH; e
o) f 2
0 0
"o h*+0,7/CIP

1)Defluorination
P7 330 C17H19N304 (\N N 18
\-) 2)Hydroxylation

3)Dehydroxylation

13



NH,

288 C15H17N303 K\N N
H

OH

h*+10,/P7

Decarbonylation

18

Tab. S10. Potential intermediates in the CIP photocatalytic degradation by H,/T-BC under alkalinity conditions.

TPs m/z Molecular formula Supposed Structure RSs/TPs Refs.
Pathway
P9 348 C17H18FN304 9 a -0,7/CIP Hydroxylation 16
F
| OH
‘/\N N OH
HN\) %

P7 330 C17H19N304 h*+-0,7/CIP 18
1)Defluorination
2)Hydroxylation
3)Dehydroxylation

P6 316 C16H17N304 & 0 h*+10,/P1 18

i 1)Defluorination
' 2)Decarbonylation
(\N N
NH ‘\
B A
P10 306 C15H16N303F 0 0 h*+10,/P1 16
F Decarbonylation
OH

HyN

)
D_z

14



P11 291 C14H11FN204 a 0 h*/P11 1
F
, - The cleavage of the
piperazine ring
0/\N N
P8 288 C15H17N303 o 9 h*/P11 18
‘ S Defluorination
(\N v
H
NH;
P12 280 C14H18N302F o h*+10,/P11 1
F OH piperazine ring and
cyclopropyl
HN N
were broken
H;N
Tab. S11 Contribution rates of active species for organic pollutants degradation.
Contribution Contribution
pH k pH k
rate% rate%
3 0.01218 100 3 0.00135 100
- 7 0.01296 100 7 0.00927 100
10 0.00949 100 10 0.1027 100
3 0.01218 98.36 3 0.00135 92.59
EDTA-2Na 7 0.01296 82.25 7 0.00927 94.61
10 0.00949 94.73 10 0.1027 99.61
3 0.01218 80.30 3 0.00135 11.11
KBrO3 7 0.01296 77.62 7 0.00927 21.25
10 0.00949 32.56 10 0.1027 71.76
TC CIP
3 0.01218 96.72 3 0.00135 77.78
TBA 7 0.01296 45.99 7 0.00927 13.70
10 0.00949 37.83 10 0.1027 64.95
3 0.01218 98.36 3 0.00135 77.78
P-BQ 7 0.01296 59.10 7 0.00927 24.49
10 0.00949 62.07 10 0.1027 97.08
3 0.01218 53.20 3 0.00135 62.96
DABCO 7 0.01296 46.76 7 0.00927 97.84
10 0.00949 34.67 10 0.1027 99.03
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Fig. S1. XRD of H,/BC.
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Fig. S5. Degradation of (a) TC, (b) CIP at different initial concentrations, and the reaction rate of (c)TC, (d) CIP.
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Fig. S6. MS? spectra of intermediate products resulting from TC photocatalytic degradation
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Fig. S7. MS? spectra of intermediate products resulting from TC photocatalytic degradation under acidic conditions.
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Fig. S8. MS? spectra of intermediate products resulting from TC photocatalytic degradation under neutral conditions.
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Fig. S10. MS? spectra of intermediate products resulting from CIP photocatalytic degradation
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Fig. S11. MS? spectra of intermediate products resulting from CIP photocatalytic degradation under acidic conditions.
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Fig. S12. MS? spectra of intermediate products resulting from CIP photocatalytic degradation under neutral conditions.
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Fig. S13. MS? spectra of intermediate products resulting from CIP photocatalytic degradation under alkaline conditions.
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