Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Organocatalytic Stereoselective Construction of Polycyclic Benzo[b]thiophenes from 2-Aminobenzo[b]thiophenes and Alkynylsubstituted Enones

Cheng Niu, Yao Zheng, and Da-Ming Du*

School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China E-mail: <u>dudm@bit.edu.cn</u>

Supporting Information

Content

1. General information and and starting materials	S1
2. Enantioselective synthesis and characterization of compounds 3	S1
3. Synthetic procedure and the characterization data of compound 4	S11
4. Crystal data and structure refinement	. S122
5. Reference	S14
6. Copies of ¹ H and ¹³ C NMR spectra of new compounds	S15
7. Copies of HPLC chromatograms of new products	S53

1. General information and starting materials

General information. Commercially available reagents were used without further purification. Some benzo thiophene-2-carboxylic acid were purchased from Shanghai Haohong Scientific Co., Ltd. A Column chromatography was performed with silica gel (200-300 mesh). Melting points were determined with an XT-4 melting-point apparatus and are uncorrected. ¹H NMR spectra were measured with Bruker Ascend 400 MHz (or 700 MHz) spectrometer in CDCl₃, chemical shifts were reported in δ (ppm) units relative to tetramethylsilane (TMS) as the internal standard. ¹³C NMR spectra were measured at 100 MHz (or 176 MHz) with a Bruker Ascend 400 MHz (or 700 MHz) spectrometer in δ (ppm) relative to tetramethylsilane and referenced to the solvent peak (CDCl₃ at 77.0 ppm). ¹⁹F NMR spectra were measured at 376 MHz with a Bruker Ascend 400 MHz spectrometer. High resolution mass spectra were measured with an Agilent 6520 Accurate-Mass-Q-TOF MS system equipped with an electrospray ionization (ESI) source. Enantiomeric excesses were determined by chiral HPLC analysis using an Agilent 1200 LC instrument with a Daicel Chiralpak AD-H column. Optical rotations were measured with a Krüss P8000 polarimeter at the indicated concentration with the units of grams per 100 mL.

Starting materials. Substrate **1** were prepared according to the literature [1]. Substrate **2** were prepared according to the literature [2]. The organocatalysts were prepared according to the literature [3].

2. Enantioselective synthesis and characterization of compounds 3

sulfonamide 1 (0.1 mmol), 2-alkynyl cycloenone 2 (0.12 mmol), and catalyst C2 (3.0 mg, 0.005 mmol) were dissolved in toluene (1.0 mL), and the mixture was stirred at room temperature for about 72 h (monitored by TLC). After completion of the reaction, the residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1 to 6:1) to afford the pure products **3**. Racemates were prepared following a similar procedure using following C10 as catalyst (5 mol%).

(S)-5-Benzyl-6-tosyl-2,3,6,11c-tetrahydrobenzo[4,5]thieno[2,3-c]isoquinolin-4(1H)-one

(3a). White solid (44.5 mg, 89% yield), m.p. 179 – 180 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 70/30, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 14.5 (minor), $t_{\rm R}$ = 23.8 min (major); 96% ee. [α] p^{25} = –126.5° (*c* = 1.09, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.74 –7.72 (m, 1H, ArH), 7.52 (d, *J* = 8.0 Hz, 2H, ArH), 7.46 (d, *J* = 7.6 Hz, 2H, ArH), 7.42 – 7.40 (m, 1H, ArH), 7.33 – 7.29 (m, 2H, ArH), 7.23 (d, *J* = 8.0 Hz, 4H, ArH), 7.16 (t, *J* = 7.4 Hz, 1H, ArH), 4.52 (d, *J* = 14.8 Hz, 1H, CH₂), 4.37 (d, *J* = 14.4 Hz, 1H, CH₂), 3.49 (dd, *J*₁ = 12.0 Hz, *J*₂ = 4.8 Hz, 1H, CH), 2.58 (dt, *J*₁ = 15.6 Hz, *J*₂ = 5.4 Hz, 1H, CH₂), 0.28 – 0.18 (m, 1H, CH₂) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 201.5, 145.0, 140.6, 138.4, 138.1, 137.0, 135.1, 132.1, 129.33, 129.27, 128.5, 128.2, 126.3, 125.4, 124.7, 124.2, 122.2, 120.5, 42.4, 38.1, 36.1, 30.5, 23.1, 21.6 ppm. HRMS (ESI): *m/z* calcd. for C₂₉H₂₆NO₃S₂ [M + H]⁺ 500.1349, found 500.1353.

(S)-5-benzyl-6-(phenylsulfonyl)-2,3,6,11c-tetrahydrobenzo[4,5]thieno[2,3-c]isoquinolin-

4(1*H***)-one (3b).** White solid (39.8 mg, 82% yield), m.p. 187–189 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 70/30, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 13.3 (minor), $t_{\rm R}$ = 18.3 min (major); 95% ee. [α]_D²⁵ = -105.9° (*c* = 1.52, CH₂Cl₂). ¹H NMR (700 MHz, CDCl₃): δ 7.73 (d, *J* = 8.4 Hz, 1H, ArH), 7.64 (d, *J* = 7.7 Hz, 2H, ArH), 7.59 (t, *J* = 7.4 Hz, 1H, ArH), 7.47 – 7.43 (m, 4H, ArH), 7.40 (d, *J* = 7.7 Hz, 1H, ArH), 7.31 – 7.28 (m, 2H, ArH), 7.24 (t, *J* = 7.0 Hz, 2H, ArH), 7.16 (t, *J* = 7.4 Hz, 1H, ArH), 4.52 (d, *J* = 14.4 Hz, 1H, CH₂), 4.37 (d, *J* = 14.7 Hz, 1H, CH₂), 3.46 (dd, *J*₁ = 11.9 Hz, *J*₂ = 4.9 Hz, 1H, CH), 2.57 (dt, 1H, *J*₁ = 15.4 Hz, *J*₂ = 5.6 Hz, 1H, CH₂), 2.26 – 2.21 (m, 1H, CH₂), 2.07 – 2.03 (m, 1H, CH₂), 1.81 – 1.74 (m, 1H, CH₂), 1.72 – 1.67 (m, 1H, CH₂), 0.16 – 0.10 (m, 1H, CH₂) ppm. ¹³C NMR (176 MHz, CDCl₃): δ 201.4, 140.3, 138.3, 138.0, 136.8, 135.1, 134.8, 133.9, 132.3, 129.3, 128.8, 128.4, 128.2, 126.3, 125.5, 124.8, 124.3, 122.2, 120.5, 42.5, 38.2, 36.1, 30.6, 23.1 ppm. HRMS

(ESI): m/z calcd. for C₂₈H₂₃NNaO₃S₂ [M + Na]⁺ 508.1012, found 508.1017.

(S)-5-benzyl-9-methoxy-6-tosyl-2,3,6,11c-tetrahydrobenzo[4,5]thieno[2,3-c]isoquinolin-

4(1*H***)-one (3c).** White solid (36.0 mg, 68% yield), m.p. 165 - 166 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 70/30, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 31.0 (major), $t_{\rm R}$ = 39.7 min (minor); 93% ee. [α]_D²⁵ = -114.5 ° (c = 1.34, CH₂Cl₂). ¹H NMR (700 MHz, CDCl₃): δ 7.51 (d, J = 7.7 Hz, 2H, ArH), 7.46 (d, J = 7.7 Hz, 2H, ArH), 7.28 (d, J = 9.1 Hz, 1H, ArH), 7.25 – 7.22 (m, 4H, ArH), 7.19 (d, J = 2.1 Hz, 1H, ArH), 7.16 (t, J = 7.4 Hz, 1H, ArH), 6.90 (dd, J_1 = 8.4 Hz, J_2 = 2.1 Hz, 1H, ArH), 4.52 (d, J = 14.7 Hz, 1H, CH₂), 4.35 (d, J = 14.0 Hz, 1H, CH₂), 3.84 (s, 3H, CH₃), 3.41 (dd, J_1 = 11.9 Hz, J_2 = 4.9 Hz, 1H, CH), 2.56 (dt, 1H, J_1 = 15.4 Hz, J_2 = 5.3 Hz, 1H, CH₂), 2.38 (s, 3H, CH₃), 2.26 – 2.22 (m, 1H, CH₂), 2.07 – 2.03 (m, 1H, CH₂), 1.79 – 1.73 (m, 1H, CH₂), 1.71 – 1.67 (m, 1H, CH₂), 0.24 – 0.18 (m, 1H, CH₂) ppm. ¹³C NMR (176 MHz, CDCl₃): δ 201.5, 157.6, 145.0, 140.7, 139.6, 138.5, 134.2, 132.1, 131.9, 129.3, 128.9, 128.5, 128.2, 126.3, 125.3, 121.4, 114.0, 104.8, 55.6, 42.4, 38.2, 36.2, 30.4, 23.0, 21.6 ppm. HRMS (ESI): m/z calcd. for C₃₀H₂₈NO₄S₂ [M + H]⁺ 530.1454, found 530.1464.

(S)-5-benzyl-9-chloro-6-tosyl-2,3,6,11c-tetrahydrobenzo[4,5]thieno[2,3-c]isoquinolin-

4(1*H***)-one (3d).** White solid (39.4 mg, 74% yield), m.p. 176 – 178 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 70/30, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 17.9 (minor), $t_{\rm R}$ = 27.8 min (major); 97% ee. [α]p²⁵ = -101.9 ° (c = 0.80, CH₂Cl₂). ¹H NMR (700 MHz, CDCl₃): δ 7.70 (d, J = 1.4 Hz, 1H, ArH), 7.51 (d, J = 7.7 Hz, 2H, ArH), 7.46 (d, J = 7.7 Hz, 2H, ArH), 7.30 (d, J = 8.4 Hz, 1H, ArH), 7.26 – 7.24 (m, 5H, ArH), 7.17 (t, J = 7.4 Hz, 1H, ArH), 4.51 (d, J = 14.0 Hz, 1H, CH₂), 4.35 (d, J = 14.0 Hz, 1H, CH₂), 3.44 (dd, J_1 = 12.3 Hz, J_2 = 4.6 Hz, 1H, CH), 2.57 (dt, 1H, J_1 = 15.8 Hz, J_2 = 5.3 Hz, 1H, CH₂), 2.40 (s, 3H, CH₃), 2.28 – 2.23 (m, 1H, CH₂), 2.05 – 2.02 (m, 1H, CH₂), 1.81 – 1.75 (m, 1H, CH₂), 1.73 – 1.69 (m, 1H, CH₂), 0.25 – 0.16 (m, 1H, CH₂) ppm. ¹³C NMR (176 MHz, CDCl₃): δ 201.3, 145.2, 140.6,

139.0, 138.3, 137.4, 133.5, 132.0, 131.8, 130.8, 129.4, 129.3, 128.5, 128.3, 126.4, 125.10, 125.06, 121.8, 121.5, 42.4, 38.0, 36.1, 30.5, 23.0, 21.6 ppm. HRMS (ESI): m/z calcd. for C₂₉H₂₅³⁵ClNO₃S₂ [M + H]⁺ 534.0959; found 534.0903; calcd. for C₂₉H₂₅³⁷ClNO₃S₂ [M + H]⁺ 536.0929, found 536.0924.

(S)-5-benzyl-9-bromo-6-tosyl-2,3,6,11c-tetrahydrobenzo[4,5]thieno[2,3-c]isoquinolin-

4(1*H***)-one (3e).** White solid (42.2 mg, 73% yield), m.p. 165 – 167 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 65/35, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 19.4 (minor), $t_{\rm R}$ = 27.0 min (major); 93% ee. [α]p²⁵ = –130.7 ° (c = 1.07, CH₂Cl₂). ¹H NMR (700 MHz, CDCl₃): δ 7.84 (s, 1H, ArH), 7.50 (d, J = 7.7 Hz, 2H, ArH), 7.46 (d, J = 7.7 Hz, 2H, ArH), 7.37 (d, J = 8.4 Hz, 1H, ArH), 7.26 – 7.23 (m, 5H, ArH), 7.17 (t, J = 7.4 Hz, 1H, ArH), 4.51 (d, J = 14.7 Hz, 1H, CH₂), 4.35 (d, J = 14.7 Hz, 1H, CH₂), 3.44 (dd, J_1 = 11.9 Hz, J_2 = 4.9 Hz, 1H, CH), 2.57 (dt, 1H, J_1 = 15.4 Hz, J_2 = 5.6 Hz, 1H, CH₂), 2.39 (s, 3H, CH₃), 2.28 – 2.23 (m, 1H, CH₂), 2.04 – 2.00 (m, 1H, CH₂), 1.81 – 1.75 (m, 1H, CH₂), 1.73 – 1.68 (m, 1H, CH₂), 0.24 – 0.18 (m, 1H, CH₂) ppm. ¹³C NMR (176 MHz, CDCl₃): δ 201.3, 145.2, 140.6, 139.4, 138.3, 137.4, 133.8, 131.9, 131.8, 129.4, 129.3, 128.4, 128.3, 127.7, 126.4, 125.1, 124.7, 121.7, 118.4, 42.4, 37.9, 36.1, 30.5, 23.0, 21.6 ppm. HRMS (ESI): *m*/*z* calcd. for C₂₉H₂₅⁷⁹BrNO₃S₂ [M + H]⁺ 578.0454, found 578.0457; calcd. for C₂₉H₂₅⁸¹BrNO₃S₂ [M + H]⁺ 580.0434, found 580.0438.

(S)-5-benzyl-6-(methylsulfonyl)-2,3,6,11c-tetrahydrobenzo[4,5]thieno[2,3-c]isoquinolin-

4(1*H***)-one (3f).** White solid (41.9 mg, 81% yield), m.p. 188 – 189 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 70/30, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 12.0 (minor), $t_{\rm R}$ = 25.5 min (major); 95% ee. [α] $_{\rm D}^{25}$ = -106.7° (*c* = 0.55, CH₂Cl₂). ¹H NMR (700 MHz, CDCl₃): δ 7.53 (d, *J* = 8.4 Hz, 2H, ArH), 7.46 (d, *J* = 7.7 Hz, 2H, ArH), 7.26 – 7.24 (m, 5H, ArH), 7.20 – 7.17 (m, 2H, ArH), 7.13 (t, *J* = 8.8 Hz, 2H, ArH), 4.51 (d, *J* = 14.7 Hz, 1H, CH₂), 4.37 (d, *J* = 14.7 Hz, 1H, CH₂), 3.47 (dd, *J*₁ = 11.9 Hz, *J*₂ = 4.9 Hz, 1H, CH), 2.58 (dt,

1H, $J_1 = 15.8$ Hz, $J_2 = 5.3$ Hz, 1H, CH₂), 2.40 (s, 3H, CH₃), 2.29 – 2.24 (m, 1H, CH₂), 2.09 – 2.05 (m, 1H, CH₂), 1.82 – 1.76 (m, 1H, CH₂), 1.74 – 1.69 (m, 1H, CH₂), 0.28 – 0.23 (m, 1H, CH₂) ppm. ¹³C NMR (176 MHz, CDCl₃): δ 201.3, 157.1 (d, ¹*J*_{C-F} = 247.8 Hz), 145.2, 140.7, 138.3, 138.19, 138.16, 132.0, 131.9, 129.4 (d, ²*J*_{C-F} = 23.6 Hz), 128.5, 128.3, 126.4, 125.8 (d, ⁴*J*_{C-F} = 1.8 Hz), 125.7 (d, ³*J*_{C-F} = 7.0 Hz), 124.9 (d, ³*J*_{C-F} = 18.1 Hz), 116.44, 116.42, 110.1 (d, ²*J*_{C-F} = 18.5 Hz), 42.4, 38.2, 36.1, 30.5, 23.0, 21.6 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ –114.5 ppm. HRMS (ESI): *m/z* calcd. for C₂₉H₂₅FNO₃S₂ [M + H]⁺ 518.1254, found 518.1257.

(S)-5-benzyl-6-tosyl-2,3,6,12c-tetrahydro-

[1,3]dioxolo[4'',5'':4',5']benzo[1',2':4,5]thieno[2,3-*c*]isoquinolin-4(1*H*)-one (3g). White solid (47.8 mg, 88% yield), m.p. 173 – 175 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 70/30, flow rate 1.0 mL/min, detection at 254 nm): $t_R = 24.4$ (major), $t_R = 31.4$ min (minor); 93% ee. [α] $p^{25} = -148.8$ ° (c = 1.39, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.51 – 7.46 (m, 4H, ArH), 7.23 (d, J = 7.6 Hz, 4H, ArH), 7.15 (t, J = 7.2 Hz, 1H, ArH), 7.10 (s, 1H, ArH), 6.77 (s, 1H, ArH), 5.96 (d, J = 0.8 Hz, 2H, CH₂), 4.51 (d, J = 14.4 Hz, 1H, CH₂), 4.34 (d, J = 14.4 Hz, 1H, CH₂), 3.37 (dd, $J_1 = 12.0$ Hz, $J_2 = 4.8$ Hz, 1H, CH₂), 1.81 – 1.64 (m, 2H, CH₂), 0.18 – 0.08 (m, 1H, CH₂) ppm. ¹³C NMR (176 MHz, CDCl₃): δ 201.5, 146.6, 146.5, 145.0, 140.5, 138.4, 134.9, 132.0, 131.4, 129.27, 129.25, 128.5, 128.2, 126.3, 125.4, 101.7, 101.3, 99.8, 42.4, 38.1, 36.1, 30.3, 23.0, 21.6 ppm. HRMS (ESI): *m/z* calcd. for C₃₀H₂₅KNO₅S₂ [M + K]⁺ 582.0806, found 582.0806.

(*S*)-5-benzyl-1,2,3,11c-tetrahydro-4*H*-benzo[4,5]thieno[2,3-*c*]isochromen-4-one (3h). White solid (30.8 mg, 89% yield), m.p. 107 – 108 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 70/30, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 4.9 (major), $t_{\rm R}$ = 5.5 min (minor); 96% ee. [α]_D²⁵ = +19.6 ° (*c* = 0.76, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, *J* = 8.0 Hz, 1H, ArH), 7.55 (d, *J* = 7.6 Hz, 1H, ArH), 7.39 (d, *J* = 7.2 Hz, 2H, ArH), 7.35 – 7.28 (m, 3H, ArH), 7.27 – 7.21 (m, 2H, ArH), 4.02 – 3.87 (m, 3H, CH + CH₂), 2.75 – 2.61 (m, 2H, CH₂), 2.53 – 2.45 (m, 1H, CH₂), 2.09 – 2.02 (m, 2H, CH₂), 1.89 – 1.79 (m, 1H, CH₂) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 201.8, 155.4, 151.1, 137.1, 136.2, 132.0, 129.0, 128.4, 126.6, 124.6, 123.6, 122.5, 121.0, 113.3, 111.0, 41.3, 36.6, 34.5, 30.8, 22.1 ppm. HRMS (ESI): *m/z* calcd. for C₂₂H₁₉O₂S [M + H]⁺ 347.1100, found 347.1100.

(S)-5-benzyl-10-chloro-1,2,3,11c-tetrahydro-4H-benzo[4,5]thieno[2,3-c]isochromen-4-

one (3i). White solid (29.7 mg, 78% yield), m.p. 108 – 110 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 70/30, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 5.2 (major), $t_{\rm R}$ = 6.3 min (minor); 90% ee. [α] $_{\rm D}^{25}$ = +17.4 ° (*c* = 0.70, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, *J* = 8.8 Hz, 1H, ArH), 7.51 (d, *J* = 2.0 Hz, 1H, ArH), 7.39 (d, *J* = 7.2 Hz, 2H, ArH), 7.31 (t, *J* = 7.4 Hz, 2H, ArH), 7.23 – 7.20 (m, 2H, ArH), 3.98 – 3.84 (m, 3H, CH + CH₂), 2.70 – 2.62 (m, 2H, CH₂), 2.53 – 2.45 (m, 1H, CH₂), 2.10 – 2.03 (m, 2H, CH₂), 1.89 – 1.79 (m, 1H, CH₂) ppm. ¹³C NMR (176 MHz, CDCl₃) δ 201.6, 155.2, 152.6, 137.4, 137.0, 131.0, 129.9, 129.0, 128.5, 126.7, 123.9, 123.6, 120.7, 113.3, 110.7, 41.3, 36.5, 34.4, 30.8, 22.1 ppm. HRMS (ESI): *m/z* calcd. for C₂₂H₁₈ClO₂S [M + H]⁺ 381.0711, found 381.0709.

(*S*)-5-benzyl-9-bromo-1,2,3,11c-tetrahydro-4*H*-benzo[4,5]thieno[2,3-*c*]isochromen-4-one (3j). White solid (21.3 mg, 50% yield), m.p. 113 – 114 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 70/30, flow rate 1.0 mL/min, detection at 254 nm): $t_R = 6.9$ (major), $t_R = 8.4$ min (minor); 92% ee. $[\alpha]_D^{25} = +22.0$ ° (c = 0.87, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, J = 2.0 Hz, 1H, ArH), 7.51 (d, J = 8.4 Hz, 1H, ArH), 7.39 (d, J = 7.2 Hz, 2H, ArH), 7.35 (dd, $J_1 = 8.4$ Hz, $J_2 = 2.0$ Hz, 1H, ArH), 7.31 (t, J = 7.4 Hz, 2H, ArH), 7.24 – 7.21 (m, 1H, ArH), 3.98 – 3.86 (m, 3H, CH + CH₂), 2.71 – 2.62 (m, 2H, CH₂), 2.54 – 2.46 (m, 1H, CH₂), 2.10 – 2.03 (m, 2H, CH₂), 1.89 – 1.79 (m, 1H, CH₂) ppm. ¹³C NMR (176 MHz, CDCl₃) δ 201.6, 155.2, 152.5, 137.9, 136.9, 130.5, 129.0, 128.5, 126.7, 126.6, 123.9, 123.7, 118.7, 113.3, 110.6, 41.3, 36.5, 34.4, 30.8, 22.1 ppm. HRMS (ESI): *m/z* calcd. for C₂₂H₁₈⁷⁹BrO₂S [M + H]⁺425.0205, found 425.0200; calcd. for $C_{22}H_{18}^{81}BrO_2S [M + H]^+ 427.0185$, found 427.0191.

(S)-5-(2-bromobenzyl)-6-tosyl-2,3,6,11c-tetrahydrobenzo[4,5]thieno[2,3-c]isoquinolin-

4(1*H***)-one (3k).** White solid (53.8 mg, 93% yield), m.p. 112 – 113 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 85/15, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 17.6 (minor), $t_{\rm R}$ = 18.7 min (major); 93% ee. [α]p²⁵ = +4.6 ° (c = 1.05, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.80 – 7.77 (m, 1H, ArH), 7.53 – 7.49 (m, 4H, ArH), 7.37 – 7.31 (m, 2H, ArH), 7.20 – 7.15 (m, 4H, ArH), 7.06 – 7.01 (m, 1H, ArH), 4.64 (d, J = 16.8 Hz, 1H, CH₂), 4.37 (d, J = 16.8 Hz, 1H, CH₂), 3.33 (dd, J_1 = 11.8 Hz, J_2 = 5.0 Hz, 1H, CH), 2.52 (dt, J_1 = 15.6 Hz, J_2 = 5.0 Hz, 1H, CH₂), 2.38 (s, 3H, CH₃), 2.35 – 2.28 (m, 1H, CH₂), 2.23 – 2.15 (m, 1H, CH₂), 1.83 – 1.73 (m, 2H, CH₂), 0.79 – 0.69 (m, 1H, CH₂) ppm. ¹³C NMR (176 MHz, CDCl₃): δ 201.8, 145.0, 139.9, 138.2, 138.0, 136.9, 135.1, 134.6, 132.6, 131.7, 130.3, 129.3, 128.5, 127.7, 127.2, 126.0, 124.7, 124.2, 122.5, 121.2, 42.1, 38.6, 38.3, 30.4, 23.0, 21.6 ppm. HRMS (ESI): m/z calcd. for C₂₉H₂₅⁷⁹BrNO₃S₂ [M + H]⁺ 578.0454, found 578.0457; calcd. for C₂₉H₂₅⁸¹BrNO₃S₂ [M + H]⁺ 580.0434, found 580.0438.

(*S*)-5-(4-methylbenzyl)-6-tosyl-2,3,6,11c-tetrahydrobenzo[4,5]thieno[2,3-*c*]isoquinolin-4(1*H*)-one (3l). White solid (33.4 mg, 65% yield), m.p. 193 – 194 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 70/30, flow rate 1.0 mL/min, detection at 254 nm): $t_R = 8.1$ (major), $t_R = 12.4$ min (minor); 88% ee. $[\alpha]_D^{25} = -117.0$ ° (c = 1.13, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.75 – 7.72 (m, 1H, ArH), 7.52 (d, J = 8.4 Hz, 2H, ArH), 7.42 – 7.40 (m, 1H, ArH), 7.35 (d, J = 8.0 Hz, 2H, ArH), 7.32 – 7.29 (m, 2H, ArH), 7.23 (d, J = 8.0 Hz, 2H, ArH), 7.05 (d, J = 8.0 Hz, 2H, ArH), 4.48 (d, J = 14.4 Hz, 1H, CH₂), 4.32 (d, J = 14.4 Hz, 1H, CH₂), 3.49 (dd, $J_1 = 11.8$ Hz, $J_2 = 5.0$ Hz, 1H, CH), 2.57 (dt, $J_1 = 15.6$ Hz, $J_2 = 5.4$ Hz, 1H, CH₂), 2.39 (s, 3H, CH₃), 2.30 – 2.22 (m, 4H, CH₂ + CH₃), 2.11 – 2.04 (m, 1H, CH₂), 1.85 – 1.67 (m, 2H, CH₂), 0.27 – 0.15 (m, 1H, CH₂) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 201.4, 145.0, 140.9, 138.1, 137.1, 135.8, 135.4, 135.2, 132.1, 131.8, 129.3, 129.1, 129.0, 128.5, 125.4, 124.7, 124.2,

122.2, 120.5, 42.4, 38.1, 35.7, 30.5, 23.0, 21.6, 21.0 ppm. HRMS (ESI): m/z calcd. for C₃₀H₂₈NO₃S₂ [M + H]⁺ 514.1505, found 514.1506.

(S)-5-(4-fluorobenzyl)-6-tosyl-2,3,6,11c-tetrahydrobenzo[4,5]thieno[2,3-c]isoquinolin-

4(1*H***)-one (3m).** White solid (38.3 mg, 74% yield), m.p. 173 – 174 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 70/30, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 9.0 (major), $t_{\rm R}$ = 12.7 min (minor); 94% ee. [α] $_{\rm D}^{25}$ = -79.9° (*c* = 2.34, CH₂Cl₂). (*c* = 2.70, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.74 – 7.72 (m, 1H, ArH), 7.51 (d, *J* = 8.0 Hz, 2H, ArH), 7.46 – 7.39 (m, 3H, ArH), 7.32 – 7.29 (m, 2H, ArH), 7.22 (d, *J* = 8.0 Hz, 2H, ArH), 6.92 (t, *J* = 8.8 Hz, 2H, ArH), 4.48 (d, *J* = 14.4 Hz, 1H, CH₂), 4.31 (d, *J* = 14.4 Hz, 1H, CH₂), 3.50 (dd, *J*₁ = 12.0 Hz, *J*₂ = 4.8 Hz, 1H, CH), 2.59 (dt, *J*₁ = 15.6 Hz, *J*₂ = 5.6 Hz, 1H, CH₂), 0.22 – 0.12 (m, 1H, CH₂) ppm. ¹³C NMR (176 MHz, CDCl₃): δ 201.6, 161.6 (d, ¹*J*_{C-F} = 244.5 Hz), 145.2, 140.1, 138.0, 136.8, 135.1, 134.0 (d, ⁴*J*_{C-F} = 2.5 Hz), 131.9 (d, ²*J*_{C-F} = 28.2 Hz), 130.8 (d, ³*J*_{C-F} = 7.9 Hz), 129.3, 128.4, 125.3, 124.8, 124.3, 122.2, 120.5, 115.0, 114.9, 42.5, 38.0, 35.1, 30.5, 23.1, 21.6 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ –116.9 ppm. HRMS (ESI): *m*/*z* calcd. for C₂₉H₂₅FNO₃S₂ [M + H]⁺ 518.1254, found 518.1258.

(S)-4-((4-oxo-6-tosyl-1,2,3,4,6,11c-hexahydrobenzo[4,5]thieno[2,3-c]isoquinolin-5-

yl)methyl)benzonitrile (3n). White solid (45.6 mg, 87% yield), m.p. 174 - 175 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 70/30, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R} = 10.1$ min (major), $t_{\rm R} = 19.7$ min (minor); 91% ee. $[\alpha]_{\rm D}^{25} = -113.0$ ° (c = 2.13, CH₂Cl₂). ¹H NMR (700 MHz, CDCl₃): δ 7.74 (d, J = 7.7 Hz, 1H, ArH), 7.59 (d, J = 7.7 Hz, 2H, ArH), 7.52 – 7.48 (m, 4H, ArH), 7.42 (d, J = 7.7 Hz, 1H, ArH), 7.34 – 7.30 (m, 2H, ArH), 7.23 (d, J = 7.7 Hz, 2H, ArH), 4.59 (d, J = 14.7 Hz, 1H, CH₂), 4.40 (d, J = 14.7 Hz, 1H, CH₂), 3.54 (dd, $J_1 = 11.9$ Hz, $J_2 = 4.9$ Hz, 1H, CH), 2.61 (dt, $J_1 = 15.4$ Hz, $J_2 = 5.3$ Hz, 1H, CH₂), 2.39 (s, 3H, CH₃), 2.31 – 2.26 (m, 1H, CH₂), 2.08 – 2.05 (m, 1H, CH₂), 1.85 – 1.79 (m, 1H, CH₂), 1.73 –

1.69 (m, 1H, CH₂), 0.15 – 0.09 (m, 1H, CH₂) ppm. ¹³C NMR (176 MHz, CDCl₃): δ 201.5, 145.4, 144.0, 138.7, 137.9, 136.5, 134.9, 132.8, 132.1, 131.6, 130.0, 129.4, 128.4, 125.3, 124.9, 124.4, 122.2, 120.5, 119.1, 110.1, 42.3, 37.9, 36.0, 30.4, 22.9, 21.6 ppm. HRMS (ESI): *m/z* calcd. for C₃₀H₂₅N₂O₃S₂ [M + H]⁺ 525.1301, found 525.1309.

(S)-5-(naphthalen-2-ylmethyl)-6-tosyl-2,3,6,11c-tetrahydrobenzo[4,5]thieno[2,3-

c]isoquinolin-4(1*H*)-one (30). White solid (40.7 mg, 74% yield), m.p. 183 – 185 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 70/30, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 9.7 (major), $t_{\rm R}$ = 18.5 min (minor); 65% ee. [α] ${\rm p}^{25}$ = -85.3° (*c* = 0.81, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.91 (s, 1H, ArH), 7.78 – 7.69 (m, 4H, ArH), 7.61 (d, *J* = 8.4 Hz, 1H, ArH), 7.53 (d, *J* = 8.0 Hz, 2H, ArH), 7.38 (s, 3H, ArH), 7.28 – 7.20 (m, 4H, ArH), 4.68 (d, *J* = 14.4 Hz, 1H, CH₂), 4.54 (d, *J* = 14.4 Hz, 1H, CH₂), 3.51 (dd, *J*₁ = 11.8 Hz, *J*₂ = 4.2 Hz, 1H, CH), 2.60 (dt, *J*₁ = 15.0 Hz, *J*₂ = 4.6 Hz, 1H, CH₂), 2.37 (s, 3H, CH₃), 2.32 – 2.24 (m, 1H, CH₂), 2.10 – 2.05 (m, 1H, CH₂), 1.82 – 1.67 (m, 2H, CH₂), 0.23 – 0.17 (m, 1H, CH₂) ppm. ¹³C NMR (176 MHz, CDCl₃) δ 201.6, 145.1, 140.4, 138.0, 136.9, 135.9, 135.1, 133.5, 132.2, 132.0, 129.3, 128.5, 128.0, 127.8, 127.7, 127.6, 127.5, 125.6, 125.4, 125.2, 124.7, 124.2, 122.2, 120.5, 42.5, 38.1, 36.2, 30.5, 23.0, 21.6 ppm. HRMS (ESI): *m/z* calcd. for C₃₃H₂₈NO₃S₂ [M + H]⁺ 550.1505, found 550.1506.

(S)-5-(thiophen-3-ylmethyl)-6-tosyl-2,3,6,11c-tetrahydrobenzo[4,5]thieno[2,3-

c]isoquinolin-4(1*H*)-one (3p). White solid (41.9 mg, 83% yield), m.p. 184 – 185 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 70/30, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R} = 15.9$ min (major), $t_{\rm R} = 32.3$ min (minor); 97% ee. [α]D²⁵ = -122.5° (*c* = 2.61, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.75 – 7.73 (m, 1H, ArH), 7.50 (d, *J* = 8.4 Hz, 2H, ArH), 7.42 – 7.39 (m, 1H, ArH), 7.33 – 7.28 (m, 2H, ArH), 7.25 – 7.20 (m, 3H, ArH), 7.16 – 7.14 (m, 2H, ArH), 4.55 (d, *J* = 14.8 Hz, 1H, CH₂), 4.34 (d, *J* = 14.8 Hz, 1H, CH₂), 3.47 (dd, *J*₁ = 15.8 Hz, *J*₂ = 5.0 Hz, 1H, CH₂), 2.57 (dt, *J*₁ = 15.6 Hz, *J*₂ = 5.6 Hz, 1H, CH₂), 2.38 (s, 3H, CH₃), 2.29 –

2.21 (m, 1H, CH₂), 2.12 – 2.05 (m, 1H, CH₂), 1.84 – 1.64 (m, 2H, CH₂), 0.29 – 0.19 (m, 1H, CH₂) ppm. ¹³C NMR (176 MHz, CDCl₃): δ 201.5, 145.1, 140.3, 138.2, 138.0, 136.9, 135.1, 132.0, 131.4, 129.3, 128.8, 128.4, 125.4, 124.8, 124.7, 124.2, 122.6, 122.2, 120.5, 42.3, 37.9, 31.2, 30.4, 22.8, 21.6 ppm. HRMS (ESI): *m/z* calcd. for C₂₇H₂₃NaNO₃S₃ [M + Na]⁺ 528.0732, found 528.0740.

(S)-4-benzyl-5-tosyl-1,2,5,10c-tetrahydro-3H-benzo[4,5]thieno[2,3-

b]cyclopenta[*d*]pyridin-3-one (3q). White solid (38.8 mg, 80% yield), m.p. 180 – 181 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 70/30, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 9.6 min (minor), $t_{\rm R}$ = 10.7 min (major); 70% ee. [α]p²⁵ = -137.0° (*c* = 1.69, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.74 – 7.72 (m, 1H, ArH), 7.60 – 7.58 (m, 1H, ArH), 7.45 (d, *J* = 8.4 Hz, 2H, ArH), 7.32 – 7.29 (m, 2H, ArH), 7.24 – 7.19 (m, 4H, ArH), 7.16 – 7.14 (m, 3H, ArH), 5.34 (d, *J* = 14.8 Hz, 1H, CH₂), 4.39 (dd, *J*₁ = 14.8 Hz, *J*₂ = 2.8 Hz, 1H, CH₂), 2.83 – 2.74 (m, 2H, CH₂), 2.47 – 2.28 (m + s, 5H, CH₂ + CH₃), 1.94 – 1.82 (m, 1H, CH₂) ppm. ¹³C NMR (176 MHz, CDCl₃) δ 204.8, 148.9, 145.1, 139.4, 138.0, 136.7, 134.7, 133.0, 130.6, 130.3, 129.6, 129.0, 128.3, 127.8, 126.4, 124.6, 124.2, 122.7, 122.5, 39.1, 38.4, 35.3, 26.9, 21.7 ppm. HRMS (ESI): *m/z* calcd. for C₂₈H₂₃NNaO₃S₂ [M + Na]⁺ 508.1012, found 508.1003.

(S)-6-benzyl-7-tosyl-1,2,3,4,7,12c-hexahydro-5H-benzo[4,5]thieno[2,3-

b]cyclohepta[*d*]pyridin-5-one (3r). White solid (42.1 mg, 82% yield), m.p. 182 – 183 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 70/30, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R} = 10.4$ min (minor), $t_{\rm R} = 13.5$ min (major); 92% ee. $[\alpha]_{\rm D}^{25} = -155.8^{\circ}$ (c = 2.29, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.72 – 7.68 (m, 1H, ArH), 7.61 (d, J = 8.4 Hz, 2H, ArH), 7.39 – 7.37 (m, 3H, ArH), 7.32 – 7.27 (m, 2H, ArH), 7.24 – 7.20 (m, 4H, ArH), 7.15 (t, J = 7.2 Hz, 1H, ArH), 4.47 (d, J = 15.2 Hz, 1H, CH₂), 4.17 (d, J = 15.2 Hz, 1H, CH₂), 3.49 (dd, $J_1 = 12.0$ Hz, $J_2 = 2.4$ Hz, 1H, CH₂), 2.67 – 2.49 (m, 2H, CH₂), 2.36 (s, 3H, CH₃), 1.87 – 1.83 (m, 1H, CH₂), 1.65 – 1.60 (m, 1H, CH₂), 1.55 – 1.35 (m, 2H, CH₂), -0.15 – -0.25 (m, 1H, CH₂)

ppm. ¹³C NMR (176 MHz, CDCl₃) δ 205.4, 144.9, 142.3, 138.7, 138.0, 136.5, 135.7, 134.4, 133.8, 129.5, 129.1, 128.8, 128.2, 128.1, 126.2, 124.6, 124.3, 122.3, 119.7, 43.8, 37.3, 36.9, 36.7, 30.0, 23.2, 21.5 ppm. HRMS (ESI): *m/z* calcd. for C₃₀H₂₇NNaO₃S₂ [M + H]⁺ 536.1325, found 536.1327.

3. Synthetic procedure and the characterization data of compound 4

To solution of **3a** (89.9 mg, 0.2 mmol), phenylhydrazine (43.2 mg, 0.4 mmol), and concentrated sulfuric acid (4.0 mg, 0.04 mmol) in isopropanol (4 mL), and the resulting suspension was stirred at 85 °C (oil bath temperature) for 12 h. Then concentrated the mixture. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1 - 10/1) to afford compound **4**.

(5bS,12cS,Z)-6-benzylidene-7-tosyl-5b,6,7,12c,13,14-hexahydro-5*H*-benzo[4',5']thieno-[3',2':5,6]pyrido[3,4-*a*]carbazole (4). White solid (47.0 mg, 41% yield), m.p. 169 – 170 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 70/30, flow rate 1.0 mL/min, detection at 254 nm): t_R = 5.4 min (minor), t_R = 7.5 min (major); >99% ee. [α]_D²⁵ = +85.2° (*c* = 1.85, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.83 – 7.80 (m, 2H, ArH), 7.74 (d, *J* = 8.0 Hz, 2H, ArH), 7.61 (dd, *J*₁ = 7.4 Hz, *J*₂ = 1.8 Hz, 1H, ArH), 7.54 – 7.49 (m, 3H, ArH), 7.45 (d, *J* = 8.4 Hz, 1H, ArH), 7.39 – 7.33 (m, 2H, ArH), 7.29 – 7.21 (m, 6H, ArH + NH), 7.15 (t, *J* = 7.4 Hz, 1H, ArH), 6.01 (s, 1H, CH), 3.27 – 3.24 (m, 2H, CH + CH), 2.91 – 2.75 (m, 2H, CH₂), 2.40 – 2.35 (m, 4H, CH₂ + CH₃), 1.84 – 1.72 (m, 1H, CH₂) ppm. ¹³C NMR (176 MHz, CDCl₃): δ 145.0, 136.54, 136.48, 136.41, 136.36, 134.6, 134.5, 134.4, 130.6, 130.2, 129.9, 129.6, 128.3, 128.2, 127.8, 127.0, 124.5, 124.4, 124.3, 122.5, 122.3, 120.8, 119.6, 118.4, 112.9, 111.0, 36.8, 36.6, 24.7, 21.6, 20.8 ppm. HRMS (ESI): *m/z* calcd. for C₃₅H₂₉N₂O₂S₂ [M + H]⁺ 573.1665, found 573.1665.

Identification code	CCDC 2254460
Empirical formula	$C_{30}H_{24}N_2O_3S_2$
Formula weight	524.63
Temperature/K	296(2)
Crystal system	orthorhombic
Space group	$P2_1P2_1P2_1$
a/Å	10.378(2)
b/Å	13.432(3)
c/Å	18.562(4)
$\alpha/^{\circ}$	90
β/°	90
γ/°	90
Volume/Å ³	2587(10)
Z	4
$\rho_{calc}g/cm^3$	1.347
µ/mm ⁻¹	0.241
F(000)	1096
Crystal size/mm ³	$0.200\times0.200\times0.200$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.960 to 50.208
Index ranges	$-12 \le h \le 12, -15 \le k \le 15, -22 \le l \le 21$
Reflections collected	58680
Independent reflections	4590 $[R_{(int)} = 0.1196]$
Data/restraints/parameters	4590/24/345
Goodness-of-fit on F ²	1.035
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0540, \mathrm{wR}_2 = 0.0992$
Final R indexes [all data]	$R_1 = 0.1125, wR_2 = 0.1197$
Largest diff. peak/hole / e Å ⁻³	0.210/-0.259
Absolute structure parameter	-0.01(4)

4. Crystal data and structure refinement

Crystal data and structure refinement for 3n

Identification code	CCDC 2270502
Empirical formula	$C_{35}H_{28}N_2O2S_2$
Formula weight	572.71
Temperature/K	300(2)
Crystal system	orthorhombic
Space group	$P2_1P2_1P2_1$
a/Å	9.6474(14)
b/Å	13.1696(19)
c/Å	22.923(3)
$\alpha/^{\circ}$	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	2912.5(7)
Ζ	4
$ ho_{calc}g/cm^3$	1.306
μ/mm^{-1}	1.931
F(000)	1200
Crystal size/mm ³	$0.200 \times 0.100 \times 0.080$
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/°	7.714 to 134.732
Index ranges	$-11 \le h \le 11, -13 \le k \le 15, -27 \le l \le 27$
Reflections collected	30681
Independent reflections	5189 $[R_{(int)} = 0.0984]$
Data/restraints/parameters	5189/0/323
Goodness-of-fit on F ²	1.072
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0706, wR_2 = 0.1865$
Final R indexes [all data]	$R_1 = 0.0904, wR_2 = 0.2164$
Largest diff. peak/hole / e Å ⁻³	0.205/-0.524
Absolute structure parameter	-0.090(13)

Crystal data and structure refinement for 4

Fig. S1. X-ray structure of 4

5. Reference

- C. Niu, D.-H. Xie and D.-M. Du, Isothiourea-catalysed enantioselective annulation of 2aminobenzothiophenes with α,β-unsaturated anhydrides, *Org. Chem. Front.*, 2022, 9, 5551-5556.
- [2] a) V. Rauniyar, Z. J. Wang, H. E. Burks and F. D. Toste, Enantioselective synthesis of highly substituted furans by a copper(II)-catalyzed cycloisomerization-indole addition reaction, *J. Am. Chem. Soc.*, 2011, 133, 8486-8489. b) Q. Li, Z. L. Wang, H. X. Lu and Y. H. Xu, Copper-catalyzed enantioselective 1,4-protosilylation of alkynyl-substituted enones to synthesize the highly diastereomeric chiral homoallenylsilanes, *Org. Lett.*, 2022, 24, 2832-2836. c) Z. Li, H. Zhou and J. Xu, Access to chiral polycyclic 1,4-dihydropyridines via organocatalytic formal [3 + 3] annulation of 2-(1-alkynyl)-2-alken-1-ones with 3-aminobenzofurans, *Org. Lett.*, 2021, 23, 6391-6395.
- [3] a) W. Yang and D.-M. Du, Highly enantioselective Michael addition of nitroalkanes to chalcones using chiral squaramides as hydrogen bonding organocatalysts, *Org. Lett.*, 2010, 12, 5450-5453. b) Y. Lin, Y.-X. Song and D.-M. Du, Enantioselective synthesis of CF₃-containing 3,2'-pyrrolidinyl spirooxindoles and dispirooxindoles via thiourea-catalyzed domino Michael/Mannich [3 + 2] cycloaddition reactions, *Adv. Synth. Catal.*, 2019, 361, 1064-1070. c) N. Hara, S. Nakamura, M. Sano, R. Tamura, Y. Funahashi and N. Shibata, Enantioselective synthesis of AG-041R by using *N*-heteroarenesulfonyl cinchona alkaloid amides as organocatalysts, *Chem. Eur. J.*, 2012, 18, 9276-9280.

6. Copies of ¹H and ¹³C NMR spectra of new compounds

S22

S27

S38

S42

S46

S52

S66

