Supplementary Information

Hierarchical & ultra-porous copper cobaltite flakes with honeycomb-like physiognomies for highly efficient non-enzymatic glucose sensing

Ruchika Sharma,^a Siddhant Srivastav^a and Sumanta Kumar Meher^{a*}

^aMaterials Electrochemistry & Energy Storage Laboratory, Department of Chemistry, Malaviya

National Institute of Technology Jaipur, Jaipur, Rajasthan-302017, India

Email*: skmeher.chy@mnit.ac.in

Fig. S1 TGA profile of the Cu/Co precursor

Scheme S1. The plausible mechanism during non-enzymatic electrooxidation of glucose to gluconolactone and gluconic acid on flake & honeycomb-like $CuCo_2O_4$ surface in alkaline medium^{s1}

Table S1. Comparative performance (linear range, limit of detection and sensitivity) data of flake & honeycomb-like $CuCo_2O_4$ with literature reported Cu and Co based electrodes for non-enzymatic electrochemical sensing of glucose

Electrode Material	Linear range	Limit of detection	Sensitivity	Reference
	(mM)	(µM)	(µA mM ⁻¹ cm ⁻²)	
Co ₃ O ₄ -rGO nanocomposite	0.5-1.2	1.8	1.36	s2
Cu-xCu ₂ O nanoparticles	0.8-10	16	230.8	s3
Cu NPs @ graphene	4.50	1.3	48.13	s4
Cu ₂ O nanocubes @ graphene	0.3-3.3	3.3	285	s5
Cu/Cu ₂ O@rGO	0.005-7	0.5	145.2	s6
Cu/Cu ₂ O nanoporous NPs	0.01-5.5	0.05	123.8	s7
Cu ₂ O/rGO	0.01-6.0	0.05	185.0	s8
Nanodisc like Co ₃ O ₄	0.5-5.0	0.8	27.0	s9
Nanoflake like Co ₃ O ₄	0.1-5.0	0.7	118.0	s10

Porous nanowires like Co ₃ O ₄	0.05-5.7	5.0	300	s11
Hollow microspheres like Co ₃ O ₄	0.02-1.4	1.2	69	s12
Co ₃ O ₄ nanowires	0.01-12	0.02	46	s13
Cu ₂ O@ZIF-67	0.01-16.3	6.5	181.34	s14
Cu-MOF	0.1-3.5	2.4	89	s15
Cu nanospheres @ porous carbon	0.001-5.62	0.48	28.67	s16
Cu NPs on glass	0.01-0.2	2.47	145.5	s17
Co ₃ O ₄ nanoplates	0.05-3.2	2.7	212.92	s18
NiO-CuO/CFME nanocomposite	0.001-0.5	0.4	70	s19
Co dendrite array film	-	-	359.0	s20
Cu-Co-rGO	-	0.15	240.0	s21
Cu ₂ O biscuit/SPCE	0.0005-4.0	-	309.0	s22
Porous CuO particles	0.001-4.3	0.25	1.163	s23
Cu ₂ O @ CuO @ NiCo ₂ O ₄	0.035-4.5	12.0	0.112	s24
CuCo ₂ O ₄ nanowire arrays	0.5-1.0	1	20.9	s25
Cu/Ni(OH) ₂ nanoboxes	0.00005-5.0	0.07	487.3	s26
Porous Co ₃ O ₄	0.49-1.92	0.16	426.0	s27
3D Co ₃ O ₄	0.001-0.3	0.1	471	s28
Cu ₂ O vulcan XC-72	0 - 6.0	2.4	629	s29
CuO/Ni(OH) ₂	0.05-8.5	0.31	598	s30
Co ₃ O ₄ /carbon nanotube	0- 5.2	0.08	131.69	s31
Cu/CuO/ZnO hybrid nanostructures	0.1 to 1	18	408	s32
Zn doped Co ₃ O ₄ film	0.005–0.62	2	193	s33

Cu/CuO/Cu(OH) ₂ - polydopamine	0.02–20	20	223.17	s34
Cu/Cu ₂ O aerogels	0.001–5.2	0.6	195	s35
3D rambutan-like CuO/reduced graphene oxide	0.0005-3.75	0.10	52.1	s36
Flake & honeycomb-like CuCo ₂ O ₄	0-3.2	1.5	690.0	Present work

Table S2. Amperometric response of flake & honeycomb-like $CuCo_2O_4$ to sequential addition of 1 mmol dm⁻³ of various interfering species in 0.15 mol dm⁻³ NaOH solution after initial addition of 0.1 mmol dm⁻³ of glucose at an applied potential of 0.5 V.

Interferent	Current response (%) with respect to glucose ^a
Lactose	4.70
Fructose	1.76
Ascorbic Acid (AA)	3.52
Uric Acid (UA)	1.17
Dopamine (DA)	1.11

^aThe current response to 0.1 mol dm⁻³ of glucose is 0.017 mA (100%)

Table S3. The actual sample markup recovery of glucose using flake & honeycomb-like $CuCo_2O_4$ electrode at an applied potential of 0.5 V.

SI. No.	Coke sample (mM)	Glucose added (mM)	Glucose recovered (mM)	RSD (%)	Recovery (%)
1	0.015	0.060	0.0813	1.31	108.40
2	0.015	0.135	0.1498	1.87	99.86
3	0.015	0.210	0.2290	2.18	101.77

Notes and References

- s1 S. K. Meher and G. Ranga Rao, *Nanoscale*, 2013, 5, 2089–2099.
- s2 Y. Zheng, P. Li, H. Li and S. Chen, Int. J. Electrochem. Sci., 2014, 9, 7369–7381.
- s3 Z. Khosroshahi, F. Karimzadeh, M. Kharaziha and A. Allafchian, *Mater. Sci. Eng. C.*, 2020, 108, 110216.
- s4 D. Jiang, Q. Liu, K. Wang, J. Qian, X. Dong, Z. Yang, X. Du and B. Qiu, *Biosens. Bioelectron.*, 2014, 54, 273–278.
- s5 M. Liu, R. Liu and W. Chen, *Biosens. Bioelectron.*, 2013, 45, 206–212.
- s6 H. Huo, C. Guo, G. Li, X. Han and C. Xu, RSC Adv., 2014, 4,20459–20465.
- s7 Y. Zhao, Y. Li, Z. He and Z. Yan, RSC Adv., 2013, 45, 2178–2181.
- s8 D. L. Zhou, J.J. Feng, L.Y. Cai, Q.X. Fang, J.R. Chen and A.J. Wang, *Electrochim. Acta.*, 2014, **115**, 103–108.
- s9 R.A. Soomro, A. Nafady, Z.H. Ibupoto, S.T.H. Sherazi, M. Willander and M.I. Abro, *Mater. Sci. Semicond. Process.*, 2015, 34, 373–381.
- s10 R.A. Soomro, Z.H. Ibupoto, S.T.H. Sherazi, M.I. Abro, M. Willander, S.A. Mahesar and N.H. Kalwar, *Mater. Express*, 2015, **5**, 5437–444.
- s11 L. Kang, D. He, L. Bie and P. Jiang, Sens. Actuators B, 2015, 220, 888-894.
- s12 H. Yin, X. He, Z. Cui and Q. Nie, Micro Nano Lett., 2016, 11, 151–155.
- s13 K. Khun, Z.H. Ibupoto, X. Liu, V. Beni and M. Willander, *Mater. Sci. Eng. B*, 2015, **194**, 94–100.
- s14 N. Yang, K. Guo, Y. Zhang and C. Xu, J. Mater. Chem. B, 2020, 8, 2856–2861.
- s15 Y. Sun, Y. Li, N. Wang, Q.Q. Xu, L. Xu and M. Lin, *Electroanalysis*, 2018, 30, 474–478.
- s16 Y. Xie, Y. Song, Y. Zhang, L. Xu, L. Miao, C. Peng and L. Wang, J. Alloys Compd., 2018, 757, 105–111.
- s17 L. Wang, C. Peng, H. Yang, L. Miao, L. Xu, L. Wang and Y. Song, J. Mater. Sci., 2019, 54, 1654–1664.
- s18 M. Kang, H. Zhou, N. Zhao and B. Lv, CrystEngComm, 2020, 22, 35-43.
- s19 N. Batvani, M.A. Tehrani, S. Alimohammadi and M.A. Kiani, *Sens. Bio-Sens. Res.*, 2022, 38, 100532.
- s20 J.Y. Zheng, Z.L. Quan, G. Song, C.W. Kim, H.G. Cha, T.W. Kim, W. Shin, K.J. Lee, M.H. Jung and Y.S. Kang, *J. Mater. Chem.*, 2012, **22**, 12296–12304.

- s21 K. Justice Babu, S. Sheet, Y.S. Lee and G. Gnana Kumar, ACS Sustain. Chem. Eng., 2018, 6, 1909–1918.
- s22 M. Velmurugan and N. Karikalan, J. Colloid Interface Sci., 2017, 493, 349-355.
- s23 J. Xu, X. Xiao, J. Zhang, J. Liu, J. Ni, H. Xue and H. Pang, *Part. Part. Syst. Charact.*, 2017, 34, 1600420.
- s24 R.X. Zhang, P. Yang and Y.X. Zhang, Mater. Lett., 2020, 272, 127850.
- s25 F. Liu, Y. Zhuang, M. Guo, Y. Chen, J. Tu and L. Ding, Sensors, 2018, 18, 1131.
- s26 J. Nai, S. Wang, Y. Bai and L. Guo, Small, 2013, 9, 3147-3152.
- s27 Y. Song, J. He, H. Wu, X. Li, J. Yu, Y. Zhang and L. Wang, *Electrochim. Acta*, 2015, **182**, 165–172.
- s28 L. Han, D.P. Yang and A. Liu, Biosens. Bioelectron., 2015, 63, 145-152.
- s29 K.El. Khatib and R.A. Hameed, Biosens. Bioelectron., 2011, 26, 3542-3548.
- s30 S. Sun, N. Shi, X. Liao, B. Zhang, G. Yin, Z. Huang, X. Chen and X. Pu, *Appl. Surf. Sci.*, 2020, **529**, 147067.
- s31 X. Li, K. Ren, M. Zhang, W. Sang, D. Sun, T. Hu and Z. Ni, Sens. Actuators B, 2019, 293, 122–128.
- s32 J. Zheng, W. Zhang, Z. Lin, C. Wei, W. Yang, P. Dong, Y. Yan and S. Hu, *J. Mater. Chem. B*, 2016, **4**, 1247–1253.
- s33 M. Chowdhury, F. Cummings, M. Kebede and V. Fester, *Electroanalysis*, 2017, **29**, 578–586.
- s34 P. Viswanathan, J. Park, D.-K. Kang and J.-D. Hong, Colloids Surf. A, 2019, 580, 123689.
- s35 Y. Gao, F. Yang, Q. Yu, R. Fan, M. Yang, S. Rao, Q. Lan, Z. Yang and Z. Yang, *Microchim. Acta*, 2019, **186**, 1–9.
- s36 S. Yoon, A. Ramadoss, B. Saravanakumar and S.J. Kim, J. *Electroanal. Chem.*, 2014, 717, 90-95.