Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting information

SnSe₂/Ag₂Se heterostructures with an accumulation layer for rapid

and sensitive detection of NO₂

Junpeng Mao, ^a Dongmin Yin, ^a Wen Lu, ^a You Wang, ^{*a}Zhenze Zhou, ^a Weixun Hao, ^b Xiangqun Chen^{*a} and Juanyuan Hao^{*a}

^a School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001,

P. R. China.

^b State Key Laboratory of Efficient and Clean Coal-fired Utility Boilers, Harbin Boiler

Company Limited, Harbin 150046, P. R. China.

Fig. S1 Schematic diagram of the sensor measurement.

Fig. S2 SEM images of (a) pristine $SnSe_2$ nanosheets, (b) 3% $SnSe_2/Ag_2Se$ heterostructures, and (c) 9% $SnSe_2/Ag_2Se$ heterostructures.

Fig. S3 The full XPS survey spectra of pure SnSe₂ and 6% SnSe₂/Ag₂Se.

Fig. S4 Resistance variations to 5 ppm NO₂ of (a) SnSe₂, (b) 3% SnSe₂/Ag₂Se, (c) 6% SnSe₂/Ag₂Se, and (d) 9% SnSe₂/Ag₂Se.

Fig. S5 Resistances of the pure SnSe₂ and SnSe₂/Ag₂Se heterostructures.

Fig. S6 Experimentally recorded noise of response for the 6% SnSe₂/Ag₂Se sensor. The result indicates that the root-mean-square (RMS) value of background noise is about 0.45%.

Fig. S7 Long-term stability test toward 5 ppm NO₂ for 15 days.