Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

A New-AIE-ligand-based metal-organic framework "turn-on" sensor with extremely high sensitivity

Jinfang Zhang^{a,*}, Wenjing Li^a, Simeng Ren^a, Shunchang Zhao^a, Xingyu Tao^a, Qinghan Chen^a, Dejing Yin^b and Chi Zhang^{a,c,*}

^a International Joint Research Center for Photoresponsive Molecules and Materials, School of

Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China

^b School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China

^c School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China

Table of contents

 Table S1. Selected bond lengths(Å)and angles for 1.

Figure S1. The crystal structure of 3-L.

Figure S2. (a) the asymmetric unit of 1; (b) the coordination environments of Cd.

Figure S3. The PXRD analysis of 1.

Figure S4. The thermogravimetric analyses (TGA) of 1.

Figure S5. The IR spectra of 1 before and after sensing Bi^{3+} and Fe^{3+} .

Figure S6. Luminescence spectra of 3-L in DMF/water mixture with various water fractions (f_w).

Figure S7. The particle size distribution of the suspension.

Figure S8. the excitation and emission spectra of the water suspensions of 1.

Figure S9. Optical images of 1 before and after sensing Bi³⁺ and Fe³⁺.

Figure S10. XPS spectra before and after sensing Bi³⁺ and Fe³⁺: (a) total survey, (b) Bi 4f and (c) Fe 2p.

Figure S11. Absorption spectra of Bi³⁺ and Fe³⁺ and the excitation and emission of 1.

Bond	Lengths(Å)	Bond	Angles(°)
Cd(02)-O(1)	2.4531(19)	O(2)-Cd(02)-O(5)	152.65(8)
Cd(02)-O(2)	2.314(2)	O(2)-Cd(02)-N(00L)	103.06(9)
Cd(02)-O(3)	2.444(2)	O(5)-Cd(02)-N(00L)	81.16(7)
Cd(02)-O(4)	2.410(2)	O(2)-Cd(02)-N(1)	86.08(8)
Cd(02)-O(5)	2.3655(19)	O(5)-Cd(02)-N(1)	85.93(7)
Cd(02)-N(1)	2.395(2)	N(00L)-Cd(02)-N(1)	166.05(8)
Cd(02)-N(00L)	2.374(2)	O(2)-Cd(02)-O(4)	72.28(9)
		O(5)-Cd(02)-O(4)	81.24(8)
		N(00L)-Cd(02)-O(4)	85.64(8)

Table S1 Selected bond lengths(Å)and angles for 1.

Symmetry transformations used to generate equivalent atoms: #1 x-1/2, -y+1/2, z-1/2; #2 -x+3/2, y+1/2, -z+1/2; #3 -x+3/2, y-1/2, -z+1/2; #4 x+1/2, -y+1/2, z+1/2

Figure S1. The crystal structure of 3-L (N: blue; C, gray; H atoms are omitted).

Figure S2. (a) the asymmetric unit of 1; (b) the coordination environment of Cd.

Figure S3. The PXRD analysis of 1.

Figure S4. The thermogravimetric analyses (TGA) of 1.

Figure S5. IR spectra of 1 before and after sensing Bi^{3+} and Fe^{3+} .

Figure S6. Luminescence spectra of 3-L in DMF/water mixture with various water

fractions (f_w) .

Figure S7. The particle size distribution of the suspension of 1 in H_2O .

Figure S8. The excitation and emission spectra of the water suspensions of 1.

Figure S9. Optical images of **1** before and after sensing Bi³⁺ and Fe³⁺ achieved by Leica Microsystems.

Figure S10. XPS spectra before and after sensing Bi³⁺ and Fe³⁺: (a) total survey, (b) Bi 4f and (c) Fe 2p.

Figure S11. Absorption spectra of Bi^{3+} and Fe^{3+} and the excitation and emission of 1.