Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Electronic Supporting Information

Touching the density limits of energetic materials by

molecular design

Yunlu Li,*^[a,b] Xinzhong Wang,^[a] Mei Xue*^[c]

[a]	Dr. Yunlu Li, Prof. Xinzhong Wang,
	Department of Electronic Communication and Technology
	Shenzhen Institute of Information Technology
	2188 Longxiang Avenue, Longgang District, Shenzhen 518172 (P.R. China)
	E-mail: liyunlu2014@163.com, 7520210114@bit.edu.cn
[b]	Dr. Yunlu Li,
	School of Materials and Energy
	University of Electronic Science and Technology of China
	2006 Xiyuan Avenue, High-tech Zone (West), Chengdu 610054 (P.R. China)
[c]	Dr. Mei Xue,
	School of Materials Science & Engineering
	Beijing Institute of Technology
	5 Zhongguan South Street, Haidian District, Beijing 100081 (P.R. China)

Contents

Supporting information	
1. The Optimized cartesian coordinates for the designed compounds.	page S2
2. The HOMO and LUMO of the designed compounds.	page S11
3. Isodesmic reactions for the designed compounds.	page S12
4. ESP analysis details.	page S13
5. Density calculation comparison	page S14
References	page S15

1. The Optimized Cartesian coordinates for the designed compounds.

We conducted geometry optimization and frequency analysis for RDX, β -HMX, ϵ -HNIW, ONC, and the designed molecules at the ω B97XD/def2-TZVP level^{1,2} in the gas phase using the Gaussian 16 (A.03) program.³ The optimized structures of all compounds demonstrate true local energy minima on the potential energy surface and do not exhibit any imaginary frequencies.

CEM-1 (charge=0, multiplicity=1)				
atom	x	У	z	
С	-0.63754	0.40423	1.40602	
С	-0.4119	-1.14695	1.24408	
С	-0.56566	-0.17432	-0.80948	
С	0.91116	0.62139	1.42203	
С	1.13001	-0.91756	1.24483	
С	1.01073	0.05179	-0.80894	
н	1.41347	0.21714	-1.798	
н	-1.00743	-0.13298	-1.79602	
Ν	1.59812	-1.0845	-0.12429	
Ν	1.36417	1.11519	0.13705	
Ν	-1.09826	0.83637	0.10267	
Ν	-0.80296	-1.43656	-0.11721	
н	1.7286	-1.46515	1.95999	
н	1.35022	1.14292	2.26295	
н	-0.82694	-1.84063	1.96275	
н	-1.23294	0.79674	2.21904	
Ν	-2.02822	-2.08324	-0.34371	
0	-2.48832	-1.97122	-1.44999	
О	-2.46236	-2.7441	0.56642	
Ν	-2.44925	1.2101	-0.05451	
О	-2.86559	1.21103	-1.18188	
О	-3.02741	1.55371	0.94383	
Ν	1.08117	2.43193	-0.20594	
О	0.97027	3.20745	0.71062	
О	1.03482	2.67686	-1.38668	
Ν	2.98732	-1.24546	-0.30717	
О	3.42485	-0.91419	-1.37761	
0	3.58742	-1.76406	0.59901	

Table S1. Optimized Cartesian coordinates for CEM-1 at the @B97XD/def2-TZVP level of theory

CEM-2 (charge=0, multiplicity=1)				
atom	x	У	Z	
С	1.11471	-0.07086	-1.05406	
С	0.07096	-1.16486	-0.63651	
С	0.54818	0.18786	1.13313	
С	-0.05569	0.85791	-1.50715	
С	-1.09298	-0.23003	-1.07505	
С	-0.64699	1.14949	0.69504	
н	-0.9916	1.78737	1.49645	
Н	0.83206	0.30321	2.16968	
Ν	-1.67864	0.27962	0.15915	
Ν	-0.28961	1.8885	-0.51901	
Ν	1.62714	0.43974	0.20224	
Ν	0.22707	-1.21128	0.78667	
н	-1.8186	-0.6118	-1.77949	
н	-0.04608	1.22055	-2.52659	
н	1.88888	-0.32546	-1.76678	
Ν	-0.79195	-1.83862	1.52726	
0	-0.89153	-1.49178	2.67394	
0	-1.41218	-2.69147	0.94962	
Ν	2.91357	-0.02523	0.60832	
0	3.1241	-0.01247	1.78875	
0	3.66866	-0.31316	-0.27818	
Ν	0.63767	2.92478	-0.41499	
0	1.23896	3.19996	-1.42194	
0	0.69892	3.47496	0.65582	
Ν	-2.9739	0.85672	0.0568	
0	-3.2563	1.66135	0.90166	
0	-3.67142	0.43348	-0.82383	
Ν	0.23725	-2.47368	-1.34058	
0	-0.35646	-2.57709	-2.38854	
0	1.0005	-3.26311	-0.85565	

Table S2. Optimized Cartesian coordinates for CEM-2 at the $\omega B97XD/def2\text{-}TZVP$ level of theory

CEM-3 (charge=0, multiplicity=1)							
atom	atom x y z						
С	-1.01236	-0.64394	-1.23172				
С	-0.9894	0.68095	-0.38715				
С	-0.90897	-1.14801	0.96677				
С	0.54125	-0.62542	-1.34308				
С	0.58822	0.69816	-0.50492				
С	0.6749	-1.11983	0.86943				
Н	1.15968	-1.63688	1.68768				
н	-1.27277	-1.6805	1.83431				
Ν	1.05764	0.30631	0.82039				
Ν	1.0334	-1.63775	-0.4433				
Ν	-1.39711	-1.67092	-0.28998				
Ν	-1.42214	0.23069	0.89579				
н	0.98675	-0.63837	-2.32912				
н	-1.58364	-0.65047	-2.15148				
Ν	-1.20617	1.06306	2.0203				
0	-1.16335	0.49005	3.07631				
0	-1.14587	2.23804	1.80065				
Ν	-2.76419	-2.06468	-0.2972				
0	-3.18101	-2.52117	0.73087				
0	-3.33319	-1.96396	-1.34967				
Ν	2.34652	-2.12377	-0.63294				
0	2.75261	-2.11483	-1.76181				
0	2.89025	-2.55898	0.34868				
Ν	2.45745	0.48016	1.14924				
0	2.7464	0.09141	2.24051				
0	3.15672	1.00345	0.32817				
Ν	-1.81018	1.77797	-0.99507				
0	-1.31704	2.28583	-1.97509				
0	-2.89613	1.98161	-0.53412				
Ν	1.21526	1.93723	-1.07934				
0	1.13899	2.91982	-0.39224				
0	1.69847	1.83208	-2.17385				

Table S3. Optimized Cartesian coordinates for CEM-3 at the ω B97XD/def2-TZVP level of theory

	CEM-4 (charge=0, multiplicity=1)				
atom	x	У	Z		
С	0.99085	0.18428	-0.9979		
С	0.18131	-1.10129	-0.60596		
С	1.35708	-0.34009	1.18066		
С	-0.21647	1.08655	-0.62072		
С	-1.05427	-0.19241	-0.22449		
С	0.11547	0.56356	1.57661		
н	0.12959	0.86498	2.6149		
н	2.03187	-0.52661	2.00441		
Ν	-1.09662	-0.17367	1.23531		
Ν	-0.01497	1.70818	0.6596		
Ν	1.97948	0.31723	0.05048		
Ν	0.87862	-1.57428	0.54318		
н	1.37592	0.26733	-2.00743		
Ν	0.24975	-2.53391	1.3758		
О	0.62565	-2.53975	2.51737		
О	-0.53692	-3.25758	0.83863		
Ν	3.30791	-0.11713	-0.26573		
0	3.97642	-0.44927	0.67073		
О	3.61878	-0.03818	-1.41932		
Ν	0.98884	2.70338	0.75008		
0	1.2475	3.28684	-0.26539		
О	1.4298	2.88316	1.85246		
Ν	-2.25774	0.44989	1.87141		
0	-2.11314	0.65645	3.0387		
0	-3.2157	0.63945	1.18718		
Ν	0.07898	-2.08763	-1.73694		
0	-0.73827	-1.81281	-2.58		
0	0.87519	-2.98187	-1.74731		
Ν	-2.36406	-0.55841	-0.88702		
0	-2.82544	-1.60128	-0.51524		
О	-2.782	0.1916	-1.72069		
Ν	-0.75877	2.01857	-1.67638		
О	-1.52974	2.85261	-1.29774		
0	-0.37225	1.8113	-2.79683		

Table S4. Optimized Cartesian coordinates for CEM-4 at the ω B97XD/def2-TZVP level of theory

	CEM-5 (charge=0, multiplicity=1)				
atom	x	У	Z		
С	-1.10402	0.16627	0.4312		
С	-0.17053	-1.10768	0.4353		
С	-0.63673	-0.45959	-1.70157		
С	0.17051	1.10768	0.43538		
С	1.10399	-0.16627	0.43119		
С	0.63673	0.45973	-1.70153		
Н	0.9788	0.70864	-2.69696		
н	-0.9788	-0.70844	-2.69702		
Ν	1.6609	-0.21778	-0.9162		
Ν	0.40633	1.64495	-0.86891		
Ν	-1.66093	0.21783	-0.91619		
Ν	-0.40633	-1.64486	-0.86903		
Ν	0.49054	-2.62483	-1.37228		
0	0.53271	-2.70068	-2.56997		
0	1.05249	-3.29041	-0.55292		
Ν	-2.95264	-0.45093	-1.13386		
0	-3.26222	-0.51435	-2.28442		
0	-3.54793	-0.82101	-0.16986		
Ν	-0.49051	2.62498	-1.37211		
0	-1.05246	3.29052	-0.55272		
0	-0.53265	2.70091	-2.5698		
Ν	2.95266	0.45087	-1.1338		
0	3.26206	0.51477	-2.28439		
0	3.54819	0.82042	-0.16973		
Ν	-0.39074	-2.12864	1.54148		
0	0.26773	-1.98679	2.53339		
0	-1.23697	-2.9433	1.3168		
Ν	2.12845	-0.44435	1.51663		
0	2.79257	-1.42159	1.3198		
0	2.15052	0.30482	2.4489		
Ν	0.39068	2.12854	1.54166		
0	1.23711	2.94307	1.31719		
0	-0.26801	1.98677	2.53342		
Ν	-2.12842	0.44432	1.51668		
0	-2.1503	-0.30474	2.44906		
0	-2.79279	1.42136	1.31973		

Table S5. Optimized Cartesian coordinates for CEM-5 at the ω B97XD/def2-TZVP level of theory

RDX (charge=0, multiplicity=1)				
atom	X	У	Z	
С	0.967103	-0.986793	0.213879	
Ν	1.378162	0.354408	-0.175428	
Ν	-0.382185	-1.370734	-0.175398	
н	1.676792	-1.711226	-0.185443	
н	1.018707	-1.039492	1.306107	
С	0.371028	1.330882	0.213993	
С	-1.338188	-0.344043	0.213921	
Ν	-0.995915	1.016241	-0.175552	
н	0.643498	2.307824	-0.185091	
н	0.390764	1.401657	1.306246	
н	-2.320502	-0.596608	-0.185151	
н	-1.409486	-0.362262	1.306210	
н	-0.423910	-1.520220	-1.176351	
н	-1.104854	1.127488	-1.176371	
н	1.528899	0.393152	-1.176278	

Table S6. Optimized Cartesian coordinates for RDX at the ω B97XD/def2-TZVP level of theory

	β-HMX (charge	=0, multiplicity=1)	
atom	X	У	Z
0	1.942030	-2.343179	-0.339851
Ν	0.743228	-2.290774	-0.191089
0	-0.082640	-3.033562	-0.667948
Ν	0.271889	-1.251122	0.584561
С	1.235726	-0.339050	1.169419
С	-1.131551	-1.194920	0.867705
Ν	1.865851	0.537314	0.215330
н	0.684672	0.246352	1.904117
н	2.035252	-0.876346	1.672380
Ν	-1.865853	-0.537288	-0.215338
н	-1.527061	-2.197774	0.998447
н	-1.263081	-0.646492	1.801035
Ν	3.223186	0.429587	0.016687
С	1.131550	1.194937	-0.867719
Ν	-3.223187	-0.429564	-0.016694
С	-1.235729	0.339072	-1.169431
0	3.877692	-0.124974	0.865461
0	3.643797	0.950484	-0.995005
Ν	-0.271889	1.251145	-0.584578
н	1.527063	2.197788	-0.998471
н	1.263079	0.646500	-1.801044
0	-3.877701	0.124953	-0.865490
0	-3.643803	-0.950514	0.994969
н	-0.684677	-0.246332	-1.904128
н	-2.035256	0.876368	-1.672390
Ν	-0.743226	2.290800	0.191069
0	-1.942019	2.343141	0.339923
0	0.082651	3.033525	0.668011

Table S7. Optimized Cartesian coordinates for $\beta\text{-HMX}$ at the $\omega\text{B97XD/def2-TZVP}$ level of theory

	HNIW (charge=0, multiplicity=1)		
atom	x	У	Z
С	0.000100	1.450883	0.483513
Н	0.000295	2.491959	0.781746
Ν	-1.144837	1.126174	-0.352671
С	0.000138	0.490111	1.750081
Ν	1.144756	1.126064	-0.352850
Ν	-1.794618	2.204801	-1.006864
С	-0.790051	-0.038126	-1.158746
Ν	-1.077418	-0.473626	1.724600
н	0.000227	1.066887	2.666920
Ν	1.077617	-0.473673	1.724426
С	0.790060	-0.038165	-1.158857
Ν	1.795682	2.204232	-1.006225
0	-2.375796	1.932335	-2.022816
0	-1.742217	3.265545	-0.447939
н	-1.210164	0.050123	-2.154689
Ν	-1.245877	-1.252772	-0.555178
С	-0.788706	-1.542819	0.772135
Ν	-2.372777	-0.039694	1.915985
Ν	2.373014	-0.040024	1.915855
С	0.788768	-1.542855	0.772064
Ν	1.245962	-1.252783	-0.555212
Н	1.210076	0.050045	-2.154859
0	2.377247	1.931562	-2.021918
0	1.743246	3.265043	-0.447405
Ν	-2.299014	-1.980734	-1.121804
Н	-1.210958	-2.488097	1.092083
0	-3.241920	-0.808148	1.589377
0	-2.497650	1.050259	2.418994
0	3.242018	-0.808813	1.589639
0	2.498100	1.049894	2.418920
Н	1.211070	-2.488155	1.091900
Ν	2.297831	-1.981807	-1.122611
0	-2.613802	-2.989623	-0.550204
0	-2.753057	-1.542613	-2.145508
0	2.751013	-1.544570	-2.147086
0	2.612237	-2.990875	-0.551103

Table S8. Optimized Cartesia	an coordinates for HNIW at the	e ωB97XD/def2-TZVP level of theory	

ONC (charge=0, multiplicity=1)				
atom	x	У	Z	
С	0.768688	0.696398	0.858238	
С	-0.768261	-0.683857	-0.868167	
Ν	1.609800	1.413401	1.838595	
Ν	-1.609835	-1.481770	-1.783445	
0	1.248050	1.304802	2.980584	
0	-1.248800	-2.619839	-1.929229	
0	2.568892	1.992341	1.404267	
0	-2.568654	-0.929934	-2.252268	
С	0.777013	0.856414	-0.689324	
С	-0.774523	0.861060	-0.685679	
Ν	1.626937	1.834789	-1.398725	
Ν	-1.622574	1.768778	-1.485488	
0	2.590798	1.398269	-1.968014	
0	-2.586229	2.229695	-0.935414	
С	-0.782722	0.678595	0.859271	
С	0.783158	-0.691147	-0.849337	
Ν	-1.640372	1.470568	1.764736	
Ν	1.640338	-1.402436	-1.819928	
0	-1.289228	2.611196	1.914621	
0	1.290382	-1.297211	-2.965902	
0	-2.600618	0.911909	2.222405	
0	2.598902	-1.973924	-1.374738	
С	0.774821	-0.851155	0.698239	
С	-0.776475	-0.866356	0.676774	
Ν	1.623255	-1.823835	1.417231	
Ν	-1.627596	-1.779547	1.467026	
0	1.271803	-2.969012	1.308357	
0	-1.277925	-1.925353	2.608638	
0	2.577502	-1.380946	1.997649	
0	-2.581847	-2.246946	0.906161	
0	1.266426	2.977540	-1.294239	
0	-1.260687	1.917495	-2.622891	

Table S9. Optimized Cartesian coordinates for ONC at the ${}_{\odot}B97XD/def2-TZVP$ level of theory

2. The HOMO and LUMO of the designed compounds.

Figure S1. The HOMO (a) and LUMO (b) of HNIW, ONC, and the designed compounds.

3. Isodesmic reactions for the designed compounds.

$$\begin{array}{c} O_2 N & NO_2 \\ N & NO_2 \\ O_2 N & NO_2 \end{array} + 4 NH_3 \longrightarrow \begin{array}{c} H & H \\ N & H \\ H & H \end{array} + 4 H_2 N - NO_2 \end{array}$$
(1)

$$\begin{array}{c} O_2 N & NO_2 & NO_2 \\ N & & & N \\ \hline N & & & N \\ O_2 N & & NO_2 \end{array} + 4 NH_3 + 1 CH_4 \longrightarrow \begin{array}{c} H & H \\ N & & & & \\ \hline N & & & & \\ H & & & \\ \end{array} + 4 H_2 N - NO_2 + 1 H_3 C - NO_2$$
 (2)

$$\begin{array}{c} O_2 N & NO_2 & NO_2 \\ & & & & \\ N & & & \\ O_2 N & NO_2 & NO_2 \end{array} + 4 NH_3 + 2 CH_4 \longrightarrow \begin{array}{c} H & H \\ & & & \\ N & & & \\ H & & & \\ H & & \\ \end{array} + 4 H_2 N - NO_2 + 2 H_3 C - NO_2 \end{array}$$
(3)

$$\begin{array}{c} O_2 N & O_2 N & NO_2 \\ N & \downarrow & N \\ O_2 N & O_2 N \\ O_2 N & O_2 N \\ \end{array} + 4 NH_3 + 3 CH_4 \longrightarrow \begin{array}{c} H \\ N \\ H \\ \end{array} + 4 H_2 N - NO_2 + 3 H_3 C - NO_2 \end{array}$$

$$\begin{array}{c} (4) \\ H \\ H \\ \end{array}$$

$$O_2 N \xrightarrow{1}_{O_2 N} NO_2 + 8 CH_4 \longrightarrow H_3 C - NO_2$$
(6)

$$\begin{array}{c} O_2 N & \stackrel{NO_2}{\longrightarrow} & NO_2 \\ & \stackrel{N}{\longrightarrow} & \stackrel{N}{\longrightarrow} & \stackrel{N}{\longrightarrow} \\ & \stackrel{N}{\longrightarrow} & \stackrel{N}{\longrightarrow} & \stackrel{N}{\longrightarrow} \\ & \stackrel{N}{\longrightarrow} & \stackrel{N}{\longrightarrow} & \stackrel{N}{\longrightarrow} & \stackrel{N}{\longrightarrow} & \stackrel{N}{\longrightarrow} & \stackrel{N}{\longrightarrow} \\ & \stackrel{N}{\longrightarrow} & \stackrel{N}{\longrightarrow} & \stackrel{N}{\longrightarrow} & \stackrel{N}{\longrightarrow} & \stackrel{N}{\longrightarrow} \\ & \stackrel{N}{\longrightarrow} \\ & \stackrel{N}{\longrightarrow} & \stackrel{N}{\longrightarrow}$$

Scheme S1. The isodesmic reactions for HNIW, ONC, and the designed compounds.

4. ESP analysis supplementary details.

Table S10.	ESP	analysis	supplementary	details.

Compd.	$\sigma_{tot}{}^{2[a]}$	$\sigma^{+2[b]}$	$\upsilon^{[c]}$	$U\sigma_{tot}^2$	
	(kcal/mol) ²	(kcal/mol) ²		(kcal/mol) ²	
CEM-1	219.09	189.68	0.12	25.46	
CEM-2	200.91	183.69	0.08	15.75	
CEM-3	239.57	222.61	0.07	15.76	
CEM-4	201.14	187.50	0.06	12.71	
CEM-5	211.49	199.14	0.05	11.62	
HNIW	255.06	239.03	0.06	15.02	
ONC	136.24	131.53	0.03	4.55	

[a] Overall variance, [b] Positive variance, [c] Balance of charges.

5. Density calculation comparison.

	Compound Name	Density Exp ⁴	Politer's results ⁴	Our results
1	3,5-Diamino-2,4,6-trinitrophenol	1.89	1.853	1.849
2	3,5-Diamino-2,4,6-trinitrobenzoic acid	1.863	1.912	1.846
3	1,1,3,3-Tetranitrocyclobutane	1.831	0.805	1.83
4	1,3,5,7-Tetranitrocubane	1.814	1.809	1.838
5	1,3,5-Trinitro-1,3,5-triazacyclohexane	1.806	1.796	1.796
6	1,4-Dinitroimidazole	1.8	1.818	1.768
7	1,2,4-Trinitrobenzene	1.794	1.74	1.735
8	2,4,6-Trinitroaniline	1.773	1.768	1.779
9	4-Nitro-1H-1,2,3-triazole	1.689	1.773	1.673
10	2,4-Dinitrophenol	1.668	1.69	1.696
11	N-Nitropyrazole	1.585	1.596	1.576
12	1,3-Dinitro-1,3-diazacyclohexane	1.572	1.615	1.599
13	NC-N(NO2)-(CH2)4-N(NO2)-CN	1.527	1.557	1.524
14	H3C-N(NO2)-CH(OCH3)-N(NO2)-CH3	1.518	1.561	1.546
15	6-Methyl-2-nitrobenzonitrile	1.441	1.456	1.413
16	H3C-C(CH3)NO2-C(CH3)NO2-CH3	1.43	1.392	1.414
17	Nitromethane	1.422	1.438	1.418
18	Dimethylnitramine	1.363	1.385	1.364
19	Octanitrocubane	1.978	1.982	2.06
20	[(O2N)3C-CH2]2N-NO2	1.953	1.932	1.797
21	5-Nitro-2,4-dihydro-3H-1,2,4-triazole-3-one	1.927	1.81	1.762
22	Benzotrifuroxan	1.901	1.894	1.966
23	1,3,5,7-Tetranitro-1,3,5,7-	1.894	1.821	1.9
	tetraazacyclooctane			
24	1,3,5-Trinitro-2,4,6-trihydroxybenzene	1.887	1.922	1.954
25	1,1-Diamino-2,2-dinitroethene	1.883	1.868	1.734
26	1,3,3-Trinitroazetidine	1.961	1.772	1.787
27	2,4,6-Trinitrobenzoic acid	1.786	1.862	1.82
28	Nitromalonamide	1.78	1.775	1.676
29	2,4,6-Trinitro-N-methyl-N-nitroaniline	1.731	1.775	1.784
30	2,2,3,3-Tetranitrobutane	1.716	1.752	1.796
31	3-Methoxy-2,4,6-trinitroaniline	1.71	1.737	1.74
32	O2N-NH-(CH2)2-NH-NO2	1.709	1.653	1.598
33	HO-CH2-C(NO2)2-CH2-OH	1.652	1.697	1.678
34	3,4-Diaminofurazan	1.609	1.594	1.495
35	Trans-1,2-dinitrocyclopropane	1.603	1.631	1.633
36	H2N-(CH2)2-NH-NO2	1.563	1.478	1.371

Reference

- 1 J. D. Chai and M. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2008, **10**, 6615-6620.
- 2 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005,7, 3297-3305.
- 3 M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D. J. Fox, Gaussian 16, revision A. 03; Gaussian, Inc.: Wallingford, CT, 2016.
- 4 P. Politzer, J. Martinez, J. S. Murray, M. C. Concha and A. Toro-Labbé, *Mol Phys*, 2009, **107**, 2095-2101.