Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Information (SI)

Adsorption of Solid Phosphines on Silica and Implications for Catalysts on Oxide Surfaces

John C. Hoefler[#], Yuan Yang^{*,†}, Janet Blümel^{*,#}

[#]Department of Chemistry, Texas A&M University, College Station, Texas, United States [†]Colorado School of Mines, Golden, Colorado, United States

Figure S1. ³¹P CP/MAS NMR spectra of polycrystalline PPh₃ at 4 kHz, 3 kHz and 2 kHz spinning speeds and the corresponding wideline spectrum without spinning (bottom). Asterisks denote the rotational sidebands.

Figure S2. ³¹P CP/MAS NMR spectrum of PPh₃ adsorbed on silica (**1a**) in a monolayer (206 molecules per 100 nm² of surface area) at 4 kHz spinning speed (top) and ³¹P CP wideline spectrum (bottom).

Figure S3. ³¹P NMR signal intensities for PPh₃ adsorbed on silica (green symbols 0.1 g, red symbols 0.4 g per g of silica) when using a standard Bruker inversion recovery pulse sequence (t1ir1d) at 293 K with MAS (10 kHz). The inversion recovery data was fitted using the stretched exponential function $I(t)=A(1-Be^{(-\tau/T)})$ in the program LabPlot. The values of specific parameters for each fit can be found in Table S1 and the spectra are displayed in Figure S4.

Figure S4. ³¹P NMR spectra acquired with the standard Bruker inversion recovery pulse sequence (t1ir1d) at 293 K with MAS (10 kHz) for two samples of PPh₃ adsorbed on dried silica at different concentrations.

Table S1. Equation parameters with % uncertainty for the fit obtained from T_1 time experiments (Figure S3 and Figure S4). The inversion recovery data was fitted using the stretched exponential function $I(t) = A(1-Be^{(-\tau/T)})$ in the program LabPlot. I(t) represents arbitrary intensities measured with the TopSpin software and τ is the delay time.

Parameter (% uncertainty)	0.1 g PPh ₃ per g of SiO ₂	0.4 g PPh3 per g of SiO2	
Α	20.1371 (5.8)	72.3582 (6.0)	
В	1.73934 (3.9)	1.51027 (3.7)	
Т	1.07103 (11.5)	1.5208 (11.9)	

Figure S5. Correlation between ³¹P signal linewidth and surface coverage of PPh₃ on silica.

Figure S6. ³¹P CP/MAS signal intensities (SINO) at different contact times for polycrystalline PPh₃ (top, left) and PCy₃ (bottom, left) and surface-adsorbed PPh₃ (top, right) and PCy₃ (bottom, right).

Figure S7. ³¹P MAS spectra of polycrystalline (1) and adsorbed PPh₃ (1a), measured with a single pulse sequence without proton decoupling (top two spectra), and ³¹P CP/MAS spectrum of adsorbed PPh₃ (bottom) at 4 kHz.

Figure S8. ³¹P Wideline (no sample spinning) NMR spectra of polycrystalline PPh₃ (**1**, top) and surface-adsorbed PPh₃ (**1a**, middle), recorded without ¹H high-power decoupling, and ³¹P CP spectrum of surface-adsorbed PPh₃ (**1a**, bottom, with high-power ¹H decoupling).

Figure S9. ²H CP/MAS NMR spectra of the shown polycrystalline deuterated phosphines (top each) and ²H{¹H} MAS spectra of the silica-adsorbed deuterated phosphines (bottom each). The spinning speed was 4 kHz for all measurements. None of the ²H CP/MAS spectra of the adsorbed deuterated phosphines showed any signals. No baseline correction was applied.

Figure S10. ³¹P CP/MAS spectra of surface-adsorbed PPh₃ (**1a**) on silica with 40 Å (top) and silica with 100 Å (bottom) average pore diameter at 4 kHz. Surface coverages see Table S2.

Table S2. Adsorption of 601 mg of **1** on 1 g each of rigorously dried silicas with 40 Å and 100 Å average pore diameters.

Average Pore Diameter of Silica	Surface coverage of 1a (molecules per 100 nm ²)	$\delta(^{31}\text{P})$ of the adsorbed PPh ₃ [ppm]	Linewidth [Hz]
40 Å	202	-6	230
100 Å	169	-6	200

Figure S11. ³¹P CP/MAS spectra of surface-adsorbed PPh₃ on silica that had been dried at RT (top) and at 600 °C (bottom). The rotational frequency was 4 kHz for both spectra and 592 mg have been adsorbed on 1 g of silica, corresponding to 199 molecules of **1a** on 100 nm² of surface area.

Figure S12. ³¹P CP/MAS spectra of surface-adsorbed PPh₃ on Me₃Si-modified silica at 4 kHz. The surface coverage is 61 mg of **1a** per 1 g of modified silica.

Figure S13. ³¹P NMR spectrum of a solution of $(PPh_3)_2Ni(CO)_2$ (**3**) in THF after heating to 50 °C for 3 h (top), proton high-power decoupled ³¹P MAS spectra (10 kHz) of polycrystalline $(PPh_3)_2Ni(CO)_2$ (**3**, second from top), **3** heated in the presence of silica in THF to 50 °C for 3h (second from bottom), and **3** applied to silica and heated without solvent for 3 h (bottom).

Figure S14. ²H NMR spectra of 1- d_1 (top), 1- d_3 (middle), and 1- d_5 (bottom), with acetone- d_6 as chemical shift reference.