Supporting Information

for

Synthesis, structural, and photophysical properties of pyrazolyl bis(pentafluorophenyl) boron complexes

Anna Chandrasekar Murali, ${ }^{[\text {a] }}$ Preeta Pratakshya, ${ }^{[a]}$ Pratiksha Patel, ${ }^{[a]}$ Prakash Nayak, ${ }^{[a]}$ Saravanan Peruncheralathan, ${ }^{[a]}$ Krishnan Venkatasubbaiah $*\left[{ }^{[a]}\right.$
${ }^{\text {a }}$ School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha (India). "E-mail: krishv@niser.ac.in

Experimental section:

General information: All the reactions were carried out under N_{2} atmosphere using standard glove box, Schlenk line and vacuum line techniques. Solvents and other general reagents were purified according to standard procedures. All the reactions were monitored by thin layer chromatography. Nuclear magnetic resonance spectra were recorded on a 400 MHz or 700 MHz Fourier transform NMR spectrometer (JEOL or Bruker) with CDCl_{3} as a solvent. ${ }^{11} \mathrm{~B}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were externally referenced to $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{CDCl}_{3}(\delta=0 \mathrm{ppm})$ and α, α, α-trifluoro toluene in $\mathrm{CDCl}_{3}(\delta=-63.73 \mathrm{ppm})$, respectively. Chemical shifts are reported in δ ppm (parts per million) using residual solvent protons as the internal standard (87.26 for CDCl_{3} in ${ }^{1} \mathrm{H}$ NMR, $\delta 77.16$ for CDCl_{3} in ${ }^{13} \mathrm{C} \mathrm{NMR}$). Coupling constants are reported as J values in hertz (Hz). Splitting patterns are designated as $\mathrm{s}($ singlet $), \mathrm{d}$ (doublet), t (triplet), q (quartet), dd (doublet of doublet), $\mathrm{dt}($ doublet of triplet), m (multiplet) and br(broad). HRMS were recorded using Waters XEVO G2-XS QTOF mass spectrometer. Elemental analyses were performed in a Euro Vector EA 3000 CHNS analyzer. UV - Visible spectra were recorded on Agilent Technologies Cary 60 UV/Visible spectrometer. Fluorescence spectra and quantum yield were measured using Edinburgh specrofluorimeter instrument FS5. For the measurement of absolute quantum yield, the concentration of the boron compounds was such as to give an absorbance of around 0.1 at excitation wavelength. Absolute total quantum yields were measured using an integrating sphere (Edinburgh instrument FS5) mounted in SC-30 compartment of the spectrofluorimeter, The time-resolved fluorescence studies, a time-correlated single-photon counting (TCSPC) spectrometer (Edinburgh, OB920) has been used with a laser of 330 nm as a source of excitation and an MCP photomultiplier (Hamamatsu R3809U-50) is used as a detector. In order to check the laser profile, a water:ludox (4:1) solution has been used. Using water:ludox (4:1) solution, the instrument response function (IRF) has been obtained. Single crystal X-ray diffraction data were collected on Rigaku Super Nova fine-focused dual diffractometer, with $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=1.54178 \AA$) and $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $(0.71073 \AA$) equipped with a PILATUS200K. The structures were solved by direct methods using SHELXT program and refined with least squares minimization with SHELXL using Olex2. All non-hydrogen atoms were refined with anisotropic displacement coefficients. The H atoms were placed at calculated positions and were refined as riding atoms. The SQUEEZE procedure of Olex2 was applied for removing one of the disorder chloroform solvent in compound 4 and 5. Boron compounds 1-6 are not stable in the acidic medium. Hence, we avoided column chromatography for purification. Photo stability of compound $\mathbf{1}$ and $\mathbf{4}$ are investigated with continuous illumination of 365 nm UV light for 30 min . The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ result that both the boron compounds are stable under UV light conditions. The films were prepared by mixing of polymethylmethacrylate (PMMA) (95 mg) and compound $2(5 \mathrm{mg})$ in distilled THF, stirred (1h) and coated in a glass plate, then dried at open air for 24 h .

Starting materials: Commercially available 1,3-diphenylpropanedione, acetophenone, o-anisidine, 4-nitro-2-methoxyaniline, phenylboronic acid, stannous chloride, sodium nitrite, hydrazine monohydrate, Pd / C, 4-nitrophenylhydrazine, N -bromosuccinimide, copper(I) iodide, 1,10-phenanthroline, sodium carbonate, phenylboronic acid, iodobenzene, sodium cyanoborohydride, boron tribromide, potassium tert-butoxide, formaldehyde (37%) solution, magnesium flakes, carbon disulphide, methyl iodide, Palladium tetrakis(triphenylphosphine), sodium hydride, tris(pentafluorophenyl)borane were purchased from Alfa aesar and Sigma Aldrich. Glacial acetic acid, $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}$ was obtained from Spectrochem.

Synthesis of (2-methoxyphenyl)hydrazine hydrochloride (1e)

$\mathrm{H}_{2} \mathrm{~N}_{-} \mathrm{NH} \quad o$-Anisidine $(3.9 \mathrm{~mL}, 34.35 \mathrm{mmol}, 1.0 \mathrm{eq})$ was added slowly to conc. $\mathrm{HCl}(50 \mathrm{~mL})$ at 0 HCl .
 ${ }^{\circ} \mathrm{C}$ to form a suspension. A solution of sodium nitrite $(2.40 \mathrm{~g}, 34.69 \mathrm{mmol}, 1.1 \mathrm{eq})$ in distilled water was added dropwise to the suspension at $-30^{\circ} \mathrm{C}$. The temperature was slowly allowed to reach $0^{\circ} \mathrm{C}$ over a period of 2 h . The reaction mixture was then added slowly to a suspension of stannous chloride ($13.20 \mathrm{~g}, 69.39 \mathrm{mmol}, 2.0 \mathrm{eq}$) in conc. $\mathrm{HCl}(25 \mathrm{~mL})$ at -30 ${ }^{\circ} \mathrm{C}$. The temperature was slowly allowed to reach room temperature while continuing stirring over a period of $3-4 \mathrm{~h}$. The reaction mixture was filtered and the precipitate was washed with cold conc. HCl and then vacuum dried. Without further purification the compound was used for the next reaction.

Synthesis of 1-(2-methoxyphenyl)-3,5-diphenyl-1H-pyrazole (1d)

A mixture of 1,3-diphenylpropanedione $(4.70 \mathrm{~g}, 20.90 \mathrm{mmol}, 1.0 \mathrm{eq}$), (2methoxyphenyl)hydrazine hydrochloride (1e) ($4.80 \mathrm{~g}, 27.24 \mathrm{mmol}, 1.3 \mathrm{eq}$), glacial acetic acid $(45 \mathrm{~mL})$ and methanol $(45 \mathrm{~mL})$ was refluxed for 12 h . To the reaction mixture water was added $(100 \mathrm{~mL})$, the reaction mixture was extracted using dichloromethane ($3 \times 150 \mathrm{~mL}$). The extracted organic phase was washed with brine and dried over anhydrous sodium sulphate. The solvent was concentrated and the product (1d) was purified using silica gel column chromatography (n-hexane/EtOAc (98:2)). Yield: $4.33 \mathrm{~g}(63.0 \%){ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$
$-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.26(\mathrm{~s}, 5 \mathrm{H}), 7.11-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.82(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.2,152.0,146.3,133.3,131.2,130.1,129.5,129.0,128.6,128.3,128.0,127.9$, 127.6, 126.0, 121.1, 112.4, 103.4, 55.5. HR-MS (ESI): calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 327.1492$, observed : 327.1441.

Synthesis of 4-bromo-1-(2-methoxyphenyl)-3,5-diphenyl-1H-pyrazole (1c)

A mixture of 1-(2-methoxyphenyl)-3,5-diphenyl-1 H -pyrazole (1d) ($3.30 \mathrm{~g}, 10.20$ mmol, 1.0 eq) and N -bromosuccinimide ($2.20 \mathrm{~g}, 12.20 \mathrm{mmol}, 1.2 \mathrm{eq}$) was taken in dichloromethane $(60 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 24 h . After completion of the reaction, the product was extracted using water and dichloromethane ($3 \times 60 \mathrm{~mL}$). The organic phase was collected and dried over anhydrous sodium sulphate. The solvent was concentrated and the product (1c) was purified using silica gel column chromatography (n-hexane/EtOAc (98:2)). Yield: $4.00 \mathrm{~g}(96.0 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.35-$ $7.30(\mathrm{~m}, 6 \mathrm{H}), 7.02(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 153.8,149.7,143.8,132.2,130.3,129.4,129.3,129.0,128.8,128.6,128.3,128.2,128.0$, $120.9,112.1,96.2,93.1,55.3$. HR-MS (ESI): calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 405.0597$, 407.0578 observed : 405.0619, 407.0601.

Synthesis of 1-(2-methoxyphenyl)-3,4,5-triphenyl-1H-pyrazole (1b): A mixture of
 dimethoxyethane (DME) (70 mL) and water (23 mL) was degassed for 30 minutes and added to a mixture of 4-bromo-1-(2-methoxyphenyl)-3,5-diphenyl-1 H -pyrazole (1c) $\quad(3.50 \quad \mathrm{~g}, \quad 8.61 \mathrm{mmol}, 1.0 \quad$ eq), tetrakis(triphenylphosphine)palladium ($0.40 \mathrm{~g}, 0.35 \mathrm{mmol}, 0.04 \mathrm{eq}$), phenylboronic acid ($1.40 \mathrm{~g}, 11.4 \mathrm{mmol}, 1.2 \mathrm{eq}$) and sodium carbonate (2.70 $\mathrm{g}, 27.55 \mathrm{mmol}, 3.0 \mathrm{eq})$ under nitrogen atmosphere. The reaction mixture was refluxed for 24 h . After completion of the reaction (monitored via TLC), the reaction mixture was passed through a column of celite. The resultant mixture was extracted using water (100 mL) and dichloromethane ($3 \times 150 \mathrm{~mL}$). The extracted organic phase was washed with brine and dried over anhydrous sodium sulphate. The solvent was concentrated and the product ($\mathbf{1 b}$) was purified using silica gel column chromatography (n-hexane/EtOAc (98:2)). Yield: 1.65 g $(48 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.55-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.23$ $(\mathrm{m}, 3 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.07(\mathrm{~m}, 5 \mathrm{H}), 7.04-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=154.1,150.2,143.2,133.5,133.5,130.9$, 130.6, 130.0, 129.6, 129.3, 129.2, 128.6, 128.2, 128.2, 127.8, 127.8, 127.5, 126.6, 120.9, 119.1, 112.1, 55.3. HR-MS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 403.1805, observed : 403.1823.

Synthesis of 2-(3,4,5-triphenyl-1H-pyrazol-1-yl)phenol (1a): 1-(2-Methoxyphenyl)-3,4,5-
 triphenyl-1 H -pyrazole ($\mathbf{1 b}$) $(2.00 \mathrm{~g}, 4.95 \mathrm{mmol}, 1.0 \mathrm{eq})$ was taken in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL}) . \mathrm{BBr}_{3}(2.36 \mathrm{~mL}, 24.85 \mathrm{mmol}, 5.0 \mathrm{eq})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added dropwise to the reaction mixture under nitrogen atmosphere at $78^{\circ} \mathrm{C}$. The temperature was slowly allowed to reach to room temperature while stirring for 12 h . The reaction mixture was then added to ice-cold water and filtered. The filtrate was collected and extracted using water and dichloromethane ($3 \times 100 \mathrm{~mL}$). The extracted organic phase was washed with brine and dried over anhydrous sodium sulphate. The solvent was concentrated and the product (1a) was purified using silica gel column chromatography (n-hexane/EtOAc/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(80:10:10)). Crystallisation was done using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$. Yield: $1.5 \mathrm{~g}(78 \%) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.83(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.22(\mathrm{~m}, 9 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H})$, $7.13-7.07(\mathrm{~m}, 4 \mathrm{H}) 6.63-6.56(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=150.8,149.9,142.2$, $133.6,132.4,132.2,130.8,130.4,129.6,128.8,128.6,128.4,128.4,128.4,128.3,128.3,127.1$, 125.4, 120.8, 119.1, 118.6. HR-MS (ESI): calculated for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 389.1648$, observed : 389.1676.

Synthesis of complex 1: 2-(3,4,5-Triphenyl-1H-pyrazol-1-yl)phenol (1a) (0.30 g, 0.77 mmol ,
 1.0 eq) was taken in a sealed tube and tris(pentafluorophenyl)borane ($0.43 \mathrm{~g}, 0.85 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added to it under nitrogen atmosphere followed by dry toluene (10 mL) and refluxed for 24 h . The reaction mixture was cooled transferred to a round bottom flask and the solvent was evaporated by vacuum distillation leaving behind a glassy residue. Dry hexane (25 mL) was added to the round bottom flask and sonicated for 5 min . The white precipitate formed was collected by filtration and dried under vacuum. Crystallisation was done using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane. Yield: 0.30 $\mathrm{g}(54 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.51(\mathrm{t}, J=8.0,1 \mathrm{H}), 7.43(\mathrm{t}, J=8.0,2 \mathrm{H}), 7.35-7.28$ $(\mathrm{m}, 2 \mathrm{H}), 7.22-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.11-6.98(\mathrm{~m}, 8 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0,2 \mathrm{H}), 6.55(\mathrm{~d}, J=4.0,2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=150.4,148.1(\mathrm{~d}, J=243.41 \mathrm{~Hz}), 147.9,140.3(\mathrm{~d}, J=260.58 \mathrm{~Hz})$ $136.9(\mathrm{~d}, J=248.92 \mathrm{~Hz}) 130.6,130.5,130.3,129.8,129.6,129.5,128.7,128.4,128.2,127.9$, $127.5,124.7,123.8,120.9,120.8,120.0 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-132.98(\mathrm{bs}, 4 \mathrm{~F}, \mathrm{Pf})$, -156.33 (t, 2F, Pf), -164.12 (bs, 4F, Pf). ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.72$. HR-MS (ESI): calculated for $\mathrm{C}_{39} \mathrm{H}_{20} \mathrm{BF}_{10} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 733.1545, observed : 733.1591. Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{19} \mathrm{BF}_{10} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 63.96 ; \mathrm{H}, 2.62$, N, 3.83. Found: C, 64.35; H, 1.99, N, 4.19.

Synthesis of (2-methoxy-4-nitrophenyl)hydrazine hydrochloride (2g)

2-Methoxy-4-nitroaniline ($15.10 \mathrm{~g}, 90.00 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added slowly to conc. HCl $(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ to form a suspension. A solution of sodium nitrite $(9.3 \mathrm{~g}, 135.00 \mathrm{mmol}$, 1.5 eq) in distilled water was added dropwise to the suspension at $-30{ }^{\circ} \mathrm{C}$. The temperature was then slowly allowed to reach $0{ }^{\circ} \mathrm{C}$ over a period of 2 h . The reaction mixture was then added slowly to a suspension of stannous chloride ($40.6 \mathrm{~g}, 180.00$ $\mathrm{mmol}, 2.0 \mathrm{eq})$ in conc. $\mathrm{HCl}(50 \mathrm{~mL})$ at $-30{ }^{\circ} \mathrm{C}$. The temperature was slowly allowed to reach room temperature while continuing stirring over a period of 3-4h. The reaction mixture was filtered and the precipitate was washed with cold conc. HCl and then vacuum dried. Without further purification the compound was used for the next reaction.

Synthesis of 1-(2-methoxy-4-nitrophenyl)-3,5-diphenyl-1H-pyrazole (2f)

Compound $2 \mathbf{f}$ was prepared following a procedure similar to that used for $\mathbf{1 d}$. The quantities involved are as follows: 1,3-Diphenylpropanedione ($10.10 \mathrm{~g}, 45.09 \mathrm{mmol}$, 1.0 eq), (2-methoxy-4-nitrophenyl) hydrazine hydrochloride ($\mathbf{2 g}$) ($19.00 \mathrm{~g}, 90.18$ $\mathrm{mmol}, 2.0 \mathrm{eq})$, glacial acetic acid $(90 \mathrm{~mL})$ and methanol $(90 \mathrm{~mL})$. The product ($\mathbf{2 f}$) was purified using silica gel column chromatography (n-hexane/EtOAc (98:2)). Crystallisation was done using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane. Yield: $10.2 \mathrm{~g}(60.0 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 3 \mathrm{H})$ $7.28-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.9,153.3,148.3$,

Synthesis of 4-bromo-1-(2-methoxy-4-nitrophenyl)-3,5-diphenyl-1H-pyrazole (2e)

Compound $\mathbf{2 e}$ was prepared following a procedure similar to that used for $\mathbf{1 c}$. The quantities involved are as follows: 1-(2-Methoxy-4-nitrophenyl)-3,5-diphenyl-1 H pyrazole ($\mathbf{2 f}$) $(8.10 \mathrm{~g}, 21.81 \mathrm{mmol}, 1.0 \mathrm{eq})$ and N -bromosuccinimide ($4.60 \mathrm{~g}, 26.17$ mmol, 1.2 eq). Yield: $9.56 \mathrm{~g}(97.0 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00$ (d, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.39$ (m, 4H), $7.39-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.6,150.9,148.4,144.0,134.3,131.6,129.1,129.0,129.0,128.7$, 128.4, 128.4, 128.3, 128.1, 116.2, 107.4, 94.3, 55.8. HR-MS (ESI): calculated for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{Na}^{2}$ $([\mathrm{M}+\mathrm{Na}])^{+}: 472.0267,474.0248$ observed : 472.0281, 474.0263 .

Synthesis of 1-(2-methoxy-4-nitrophenyl)-3,4,5-triphenyl-1H-pyrazole (2d)

Compound $\mathbf{2 d}$ was prepared following a procedure similar to that used for $\mathbf{1 b}$. The quantities involved are as follows: 4-Bromo-1-(2-methoxy-4-nitrophenyl)-3,5-diphenyl-1 H -pyrazole (2e) $\left(\begin{array}{lllll}9.30 & \mathrm{~g}, & 20.52 \mathrm{mmol}, \quad 1.0 & \mathrm{eq}), ~ p a l l a d i u m\end{array}\right.$ tetrakistriphenylphosphine ($0.60 \mathrm{~g}, 0.51 \mathrm{mmol}, 0.025 \mathrm{eq}$), phenylboronic acid (3.30 $\mathrm{g}, 26.67 \mathrm{mmol}$) and sodium carbonate ($6.50 \mathrm{~g}, 61.54 \mathrm{mmol}, 3.0 \mathrm{eq}$). The product ($\mathbf{2 d}$) was purified using silica gel column chromatography (n-hexane/ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (80:10:10)). Yield: $7.00 \mathrm{~g}(76.0 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.08$ $(\mathrm{m}, 8 \mathrm{H}), 7.04-6.96(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.0,151.0,148.4,143.5$, 136.3, 134.4, 132.6, 132.5, 130.8, 130.0, 129.6, 129.2, 128.6, 128.4, 128.4, 128.2, 127.0, 120.1, 119.0, 116.3, 107.4, 55.9. HR-MS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 448.1661$, observed : 448.1631.

Synthesis of 4-(3,4,5-triphenyl-1H-pyrazol-1-yl)-3-methoxyaniline (2c)

A mixture of 1-(2-methoxy-4-nitrophenyl)-3,4,5-triphenyl-1 H -pyrazole (2d) (5.60 $\mathrm{g}, 12.6 \mathrm{mmol}, 1.0 \mathrm{eq})$, hydrazine hydrate ($6.2 \mathrm{~mL}, 126.00 \mathrm{mmol}, 10.0 \mathrm{eq}$), Pd / C $(0.13 \mathrm{~g}, 1.26 \mathrm{mmol}, 0.1 \mathrm{eq})$ and ethanol (120 mL) was refluxed for 12 h . After completion of the reaction, the reaction mixture was passed through a column of celite and was extracted using water and ethyl acetate ($3 \times 150 \mathrm{~mL}$). The extracted organic phase was washed with brine and then dried over anhydrous sodium sulphate. The solvent was concentrated and the product ($\mathbf{2 c}$) was purified using silica gel column chromatography (n-hexane/EtOAc (70:30)). Crystallisation was done using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$ hexane. Yield: $5.30 \mathrm{~g}(98.0 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.17(\mathrm{~m}, 7 \mathrm{H})$, $7.16-7.07$ (m, 5H), $7.07-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 3.37(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.2,149.6,148.1,143.3,133.7,133.6,130.8,130.7,130.0,129.7$, 128.6, 128.2, 128.1, 127.8, 127.6, 127.4, 126.4, 120.5, 118.8, 107.1, 99.0, 55.2. HR-MS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 418.1914, observed : 418.1931.

Synthesis of 3-methoxy- N, N-dimethyl-4-(3,4,5-triphenyl-1H-pyrazol-1-yl)aniline (2b):
 A mixture of 3-methoxy-4-(3,4,5-triphenyl-1 H -pyrazol-1-yl)aniline (2c) $(1.90 \mathrm{~g}, 4.56 \mathrm{mmol}, 1.0 \mathrm{eq})$, sodium cyanoborohydride $(1.40 \mathrm{~g}, 21.96 \mathrm{mmol}$, 5.0 eq), 37% formaldehyde solution ($5.6 \mathrm{~mL}, 68.43 \mathrm{mmol}, 15.0 \mathrm{eq}$) and acetic acid ($0.52 \mathrm{~mL}, 9.12 \mathrm{mmol}, 2.0 \mathrm{eq}$) was taken in acetonitrile (60 mL). The reaction mixture was stirred at room temperature for $6 h$. The reaction mixture was extracted using water and dichloromethane ($3 \times 100 \mathrm{~mL}$). The extracted organic phase was washed with brine and then dried over anhydrous sodium sulphate. The solvent was concentrated and the product (2b) was purified using silica gel column chromatography (n-hexane $/ E t O A c / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (80:10:10)). Crystallisation was done using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Ethanol. Yield: $1.96 \mathrm{~g}(97 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.56-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 6 \mathrm{H}), 7.17$ $-7.10(\mathrm{~m}, 5 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}$, $3 \mathrm{H}), 2.96(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=154.9,152.0,149.5,143.2,133.8,133.7$, 130.9, 129.7, 129.5, 128.6, 128.2, 128.1, 127.7, 127.5, 127.3, 126.4, 118.7, 118.7, 104.5, 96.1, 55.2, 40.7. HR-MS (ESI): calculated for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 446.2227$, observed : 446.2252.

Synthesis of 5-(dimethylamino)-2-(3,4,5-triphenyl-1H-pyrazol-1-yl)phenol (2a): Compound 2a was prepared following a procedure similar to that used for $\mathbf{1 a}$. The quantities involved are as follows: 3 -Methoxy- N, N-dimethyl-4-(3,4,5-triphenyl-1 H -pyrazol-1-yl)aniline ($\mathbf{2 b}$) $(1.60 \mathrm{~g}, 3.59 \mathrm{mmol}, 1.0 \mathrm{eq})$ and BBr_{3} $(1.7 \mathrm{~mL}, 17.91 \mathrm{mmol}, 5.0 \mathrm{eq})$ The product (2a) was purified using silica gel column chromatography (n-hexane $/ \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad$ (80:10:10)). Crystallisation was done using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$. Yield: $0.80 \mathrm{~g}(52 \%),{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.56(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.18(\mathrm{~m}, 9 \mathrm{H})$, $7.16-7.04(\mathrm{~m}, 4 \mathrm{H}), 6.50-6.39(\mathrm{~m}, 2 \mathrm{H}), 5.97-5.91(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.6,150.6,149.2,141.5,132.8,132.6,130.8,130.5,129.9,128.5(2 \mathrm{C})$, 128.4, 128.3 (2C), 128.0, 126.9, 125.0, 120.1, 115.7, 103.5, 101.2, 40.4. HR-MS (ESI): calculated for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 432.2070, observed : 432.2076.

Synthesis of complex 2: Compound 2 was prepared following a procedure similar to that used
 for $\mathbf{1}$. The quantities involved are as follows: 5-(Dimethylamino)-2-(3,4,5-triphenyl-1H-pyrazol-1-yl)phenol (2a) ($0.25 \mathrm{~g}, 0.58 \mathrm{mmol}, 1.0$ eq) and tris(pentafluorophenyl)borane ($0.32 \mathrm{~g}, 0.62 \mathrm{mmol}, 1.2 \mathrm{eq}$). Crystallisation was done using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane. Yield: $0.29 \mathrm{~g}(64 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.22-6.98(\mathrm{~m}, 8 \mathrm{H}), 6.83-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.38-6.32(\mathrm{~m}, 1 \mathrm{H})$, $6.29(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.1,148.1(\mathrm{~d}, J=241.12 \mathrm{~Hz}) 146.4,140.1(\mathrm{~d}, J=251.68 \mathrm{~Hz})$, $139.8,138.0,136.8(\mathrm{~d}, J=248.16 \mathrm{~Hz}), 130.5,130.4,130.2,129.6,129.4,129.1,128.6,128.3$, $128.2,128.0,127.9,127.6,125.4,122.9,121.3,114.6,103.8,102.4,96.2,40.2 .{ }^{19}$ F NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-132.82$ (bs, 4F, Pf), -156.74 (t, 2F, Pf), -164.30 (s, 4F, Pf). ${ }^{11}$ B NMR (128 MHz , CDCl_{3}) $\delta-0.85$. HR-MS (ESI): calculated for $\mathrm{C}_{41} \mathrm{H}_{25} \mathrm{BF}_{10} \mathrm{~N}_{3} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 776.1967, observed : 776.2048. Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{24} \mathrm{BF}_{10} \mathrm{~N}_{3} \mathrm{O} .0 .2\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$: C, 63.94 ; H, 3.41, N, 5.30. Found: C, 64.50; H, 3.15, N, 5.76.

Synthesis of 3-methoxy- N, N-diphenyl-4-(3,4,5-triphenyl-1H-pyrazol-1-yl)aniline (3b):

A mixture of 4-(3,4,5-triphenyl-1 H -pyrazol-1-yl)-3-methoxyaniline (2c) $(5.20 \mathrm{~g}, 12.47 \mathrm{mmol}, 1.0 \mathrm{eq})$, iodobenzene ($4.2 \mathrm{~mL}, 37.27 \mathrm{mmol}, 3.0 \mathrm{eq}$), copper iodide ($0.14 \mathrm{~g}, 0.74 \mathrm{mmol}, 0.06 \mathrm{eq}$), 1,10-phenanthroline (0.15 g , $0.84 \mathrm{mmol}, 0.07 \mathrm{eq})$, potassium tert-butoxide ($4.20 \mathrm{~g}, 37.27 \mathrm{mmol}, 3.0 \mathrm{eq}$) was taken in a round bottom flask with degassed dry toluene (100 mL). The reaction mixture was refluxed for 36 h . After completion of the reaction, the reaction mixture was passed through a column of celite, the resultant solution was extracted using water and dichloromethane (3×100 mL). The extracted organic phase was washed with brine and dried over anhydrous sodium sulphate. The solvent was concentrated and the product ($\mathbf{3 b}$) was purified using silica gel column chromatography (n-hexane/ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (80:10:10)). Crystallisation was done using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Ethanol. Yield: 5.60 g , $(79 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.58-$ $7.50(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.11(\mathrm{~m}, 15 \mathrm{H}), 7.12-6.99(\mathrm{~m}, 8 \mathrm{H}), 6.69-6.62(\mathrm{~m}$, $1 \mathrm{H}), 6.54-6.50(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=154.8,149.9,149.5$, 147.4, 143.2, 133.5, 133.5, 130.8, 130.7, 129.7, 129.7, 129.4, 128.6, 128.2, 128.1, 127.8, 127.7, 127.4, 126.5, 124.8, 123.5, 123.4, 118.9, 115.5, 107.0, 55.3. HR-MS (ESI): calculated for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 570.2540$, observed : 570.2564 .

Synthesis of 5-(diphenylamino)-2-(3,4,5-triphenyl-1H-pyrazol-1-yl)phenol (3a):

Compound 3a was prepared following a procedure similar to that used for 1a. The quantities involved are as follows: 3-Methoxy- N, N-diphenyl- 4 -(3,4,5-triphenyl-1 H-pyrazol-1-yl)aniline (3b) ($3.50 \mathrm{~g}, 6.13 \mathrm{mmol}, 1.0 \mathrm{eq}$) and $\mathrm{BBr}_{3}(2.9 \mathrm{~mL}, 30.67 \mathrm{mmol}, 5.0 \mathrm{eq})$ The product (3a) was purified using silica gel column chromatography (n-hexane/ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (80:10:10)). Crystallisation was done using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$. Yield: $2.60 \mathrm{~g},(76.5 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.72(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.25$ $(\mathrm{m}, 13 \mathrm{H}), 7.21-7.02(\mathrm{~m}, 10 \mathrm{H}), 6.83(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.46-6.40(\mathrm{~m}$, $1 \mathrm{H}), 6.29(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=151.4$, $149.5,147.8,147.3,141.8,132.5,132.3,130.8,130.4,129.7,129.4,128.7,128.6,128.44$ (2C), 128.41, 128.2, 127.0, 125.1, 124.7, 123.5, 120.5, 119.8, 113.4, 111.8. HR-MS (ESI): calculated for $\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 556.2389$, observed : 556.2344.

Synthesis of complex 3: Compound $\mathbf{3}$ was prepared following a procedure similar to that used
 for $\mathbf{1}$. The quantities involved are as follows: 5-(Diphenylamino)-2-(3,4,5-triphenyl-1H-pyrazol-1-yl)phenol (3a) ($0.25 \mathrm{~g}, 0.45 \mathrm{mmol}$, 1.0 eq) and tri(pentafluorophenyl)borane ($0.23 \mathrm{~g}, 0.54 \mathrm{mmol}, 1.2 \mathrm{eq}$). Crystallisation was done using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane. Yield: 0.32 g (80 \%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.49-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.32$ $(\mathrm{m}, 2 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 9 \mathrm{H}), 6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $4 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.34-6.29$ $(\mathrm{m}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=151.0,148.8,148.2(\mathrm{~d}, J=281.6 \mathrm{~Hz}) 147.0,146.6,140.6,140.1$ $(\mathrm{d}, J=248.16 \mathrm{~Hz}) 136.8(\mathrm{~d}, J=248.16 \mathrm{~Hz}) 130.5,130.5,130.3,129.5,129.5,129.5,128.8$, $128.3,128.1,127.7,127.6,125.5,124.1,123.3,121.0,118.6,112.8,112.4 .^{19} \mathrm{~F}$ NMR (376 MHz , CDCl_{3}) $\delta=-132.94$ (bs, 4F, Pf), -156.55 (t, 2F, Pf), -164.14 (bs, 4F, Pf). ${ }^{11}$ B NMR (128 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=-1.02$. HR-MS (ESI): calculated for $\mathrm{C}_{51} \mathrm{H}_{29} \mathrm{BF}_{10} \mathrm{~N}_{3} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 900.2280$, observed
: 900.2245. Anal. Calcd for $\mathrm{C}_{51} \mathrm{H}_{28} \mathrm{BF}_{10} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 68.09$; H, 3.14, N, 4.67. Found: C, 67.89; H, 3.74, N, 4.62.

Synthesis of methyl 2-methoxybenzodithiolate (4f)

Activated magnesium turnings ($0.84 \mathrm{~g}, 34.70 \mathrm{mmol}, 1.3 \mathrm{eq}$) were added to 60 mL of dry THF under N_{2} atmosphere to a two neck RB and the solution was warmed till brisk effervescence was observed. After activation of Mg , the solution was immersed in an icecooled water bath and 2-bromoanisole ($5.00 \mathrm{~g}, 3.33 \mathrm{~mL}, 26.69 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added dropwise. The solution was stirred for about 2 h at room temperature; $\mathrm{CS}_{2}(2.23 \mathrm{~g}, 1.77 \mathrm{~mL}$, $29.36 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added dropwise to the reaction mixture at $0^{\circ} \mathrm{C}$. Then the reaction mixture was stirred at room temperature for another 2 h after which methyl iodide $(4.16 \mathrm{~g}, 1.83 \mathrm{~mL}, 29.36 \mathrm{mmol}, 1.1$ eq) was added dropwise to it at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir at rt , overnight. After completion of the reaction, it was quenched with ice-cold water. The reaction mixture was extracted using water and ethyl acetate ($3 \times 100 \mathrm{~mL}$). The extracted organic phase was washed with brine and dried over anhydrous sodium sulphate. The solvent was concentrated under reduced pressure and the product was purified using silica gel column chromatography (n-hexane/EtOAc (99.5:0.5)). Yield: 4.79 $\mathrm{g}(90.0 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz ,) $\delta 7.40(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz} 1 \mathrm{H}), 7.36(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.00-6.92(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 229.7,154.8,136.6$, 131.3, 129.0, 120.5, 111.9, 56.1, 21.1. HR-MS (ESI): calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{OS}_{2} \mathrm{~K}\left([\mathrm{M}+\mathrm{K}]^{+}\right): 236.9810$, observed : 237.0095.

Synthesis of 3-(2-methoxyphenyl)-1-phenyl-3-thioxopropan-1-one (4e)

The compound (4e) has been synthesized following a procedure reported in literature. ${ }^{1}$ To a stirred suspension of $\mathrm{NaH}(1.28 \mathrm{~g}, 26.8 \mathrm{mmol}, 1.2 \mathrm{eq})$ in DMF $(50 \mathrm{~mL})$ under N_{2} atmosphere was added a solution of acetophenone $(2.68 \mathrm{~g}$, $2.61 \mathrm{~mL}, 22.33 \mathrm{mmol}, 1.0 \mathrm{eq}$) and methyl 2-methoxybenzodithioate ($\mathbf{4 f}$) (5.00 $\mathrm{g}, 26.8 \mathrm{mmol}, 1.2 \mathrm{eq})$ in DMF $(30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, dropwise. The reaction mixture was further stirred at room temperature for about 5 h (monitored by TLC) and was poured into ice-cold water (100 mL) and acidified with acetic acid. The product (4e) was extracted using water and EtOAc ($3 \times 150 \mathrm{~mL}$). The extracted organic phase was washed with brine and dried over anhydrous sodium sulphate. The solvent was concentrated under reduced pressure to give crude product 3-(2-methoxyphenyl)-1-phenyl-3-thioxopropan-1-one, (4e) which was used for the next reaction without purification.

Synthesis of 3-(2-methoxyphenyl)-1,5-diphenyl-1H-pyrazole (4d)

A mixture of 3-(2-methoxyphenyl)-1-phenyl-3-thioxopropan-1-one, (4e) (5.00 g $18.45 \mathrm{mmol}, 1.0 \mathrm{eq})$, phenylhydrazine ($2.20 \mathrm{~g}, 20.34 \mathrm{mmol}, 1.1 \mathrm{eq}$) in ethanol (45 mL) was refluxed for 12 h . The reaction mixture was extracted using water and dichloromethane ($3 \times 150 \mathrm{~mL}$). The extracted organic phase was washed with brine and dried over anhydrous sodium sulphate. The solvent was concentrated under reduced pressure and the product ($\mathbf{4 d}$) was purified using silica gel column chromatography (n-hexane/EtOAc (96:4)). Yield: $3.32 \mathrm{~g}(40 \%)$. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 11 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 2 \mathrm{H})$, $3.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 157.0,149.0,143.4,140.4,131.0,129.2,129.0,128.9$ (2C), $128.5,128.1,127.3,125.4,122.1,121.0,111.3,109.4,55.6$. HR-MS (ESI): calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 327.1492$, observed : 327.1494.

Synthesis of 4-Bromo-3-(2-methoxyphenyl)-1,5-diphenyl-1H-pyrazole (4c)

Compound $\mathbf{4 c}$ was prepared following a procedure similar to that used for $\mathbf{1 c}$. The quantities involved are as follows: 3-(2-Methoxyphenyl)-1,5-diphenyl-1H-pyrazole (4d) $(2.00 \mathrm{~g}, 6.12 \mathrm{mmol}, 1.0 \mathrm{eq})$ and N -bromosuccinimide $(1.31 \mathrm{~g}, 7.35 \mathrm{mmol}, 1.2$ eq). The product was purified using silica gel column chromatography (n hexane/EtOAc (94:6)). Yield: $1.31 \mathrm{~g}(53.0 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.23(\mathrm{~m}, 11 \mathrm{H}), 7.12-7.00(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 157.7,149.5,141.0,140.0,131.9,130.4,130.3,129.3,128.9,128.8,128.5$, $127.4,124.9,121.1,120.6,111.3,97.8,55.7$. $\mathrm{HR}-\mathrm{MS}(\mathrm{ESI})$: calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 405.0597, 407.0578 observed : 405.0574, 407.0558.

Synthesis of 3-(2-methoxyphenyl)-1,4,5-triphenyl-1H-pyrazole (4b):

Compound $\mathbf{4 b}$ was prepared following a procedure similar to that used for $\mathbf{1 b}$. The quantities involved are as follows: 4-Bromo-3-(2-methoxyphenyl)-1,5-diphenyl$1 H$-pyrazole (4c) ($1.67 \mathrm{~g}, 4.12 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.14 \mathrm{~g}, 0.12 \mathrm{mmol}, 0.03$ eq), phenylboronic acid $(0.586 \mathrm{~g}, 4.81 \mathrm{mmol} .1 .2 \mathrm{eq})$, and sodium carbonate $(1.31$ $\mathrm{g}, 12.40 \mathrm{mmol}, 3.0 \mathrm{eq})$.. The product ($\mathbf{4 b}$) was purified using silica gel column chromatography (n-hexane/EtOAc (96:4)). Yield: 1.34 g (90%). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.11(\mathrm{~m}, 9 \mathrm{H}), 7.11-6.99(\mathrm{~m}, 5 \mathrm{H})$,
$6.95(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.0,148.9,140.1,134.3,131.8,130.7,130.4,129.7,129.2,129.1,128.7,128.4$, 128.2, 127.8, 127.1, 125.9, 125.5, 122.8, 122.0, 120.8, 111.2, 54.8. HR-MS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{ONa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 425.1630$, observed : 425.1639.

Synthesis of 2-(1,4,5-triphenyl-1H-pyrazol-3-yl)phenol (4a):

Compound $4 \mathbf{a}$ was prepared following a procedure similar to that used for 1a. The quantities involved are as follows: 3-(2-Methoxyphenyl)-1,4,5-triphenyl-1H-pyrazole (4b) ($1.50 \mathrm{~g}, 3.73 \mathrm{mmol}, 1.0 \mathrm{eq}$) and $\mathrm{BBr}_{3}(1.41 \mathrm{~mL}$, $14.92 \mathrm{mmol}, 4.0 \mathrm{eq}$). The product (4a) was purified using silica gel column chromatography (n-hexane/EtOAc (94:06). Yield: $1.00 \mathrm{~g}(69 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=10.87(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 8 \mathrm{H}), 7.10-7.06(\mathrm{~m}$, $6 \mathrm{H}), 7.00-6.93(\mathrm{~m}, 4 \mathrm{H}), 6.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=156.5,148.3,141.8,139.3,133.1,131.1,130.4,129.3,129.3,129.0,128.6,128.6$, 128.4, 128.3, 127.6, 127.4, 124.9, 121.1, 118.8, 117.2, 116.6. HR-MS (ESI): calculated for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 389.1648$, observed : 389.1641

Synthesis of complex 4: Compound 4 was prepared following a procedure similar to that used
 for 1. The quantities involved are as follows: 2-(1,4,5-Triphenyl-1H-pyrazol-3-yl)phenol (4a) ($0.25 \mathrm{~g}, 0.64 \mathrm{mmol}, 1.0 \mathrm{eq})$ and tri(pentafluorophenyl)borane $(0.40 \mathrm{~g}, 0.77 \mathrm{mmol}, 1.2 \mathrm{eq})$. Crystallisation was done using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane. Yield: $0.25 \mathrm{~g}(54 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.39(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 2 \mathrm{H})$, $7.24-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~m}, 6 \mathrm{H}), 6.99(\mathrm{~m}, 4 \mathrm{H}), 6.62(\mathrm{t}, J=8.3,1 \mathrm{H})$. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=155.5,148.1(\mathrm{~d}, J=243.41 \mathrm{~Hz})$ $147.2,142.8,140.1(\mathrm{~d}, J=252.5 \mathrm{~Hz}) 136.9(\mathrm{~d}, J=247.45 \mathrm{~Hz}) 134.8,132.5,130.9,130.7,130.4$, $130.2,129.8,129.2,129.0,128.7,128.5,126.7,126.2,119.0,115.1 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , CDCl_{3}) $\delta=-134.34(\mathrm{bs}, 4 \mathrm{~F}, \mathrm{Pf}),-156.65(\mathrm{t}, 2 \mathrm{~F}, \mathrm{Pf}),-163.94(\mathrm{bs}, 4 \mathrm{~F}, \mathrm{Pf}) .{ }^{11} \mathrm{~B}$ NMR (128 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=-0.60$. HR-MS (ESI): calculated for $\mathrm{C}_{39} \mathrm{H}_{20} \mathrm{BF}_{10} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 733.1545$, observed : 733.1526. Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{19} \mathrm{BF}_{10} \mathrm{~N}_{2} \mathrm{O} .0 .2\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$: C, 64.41 ; H, 2.93, N, 3.74. Found: C, 64.79; H, 2.51, N, 4.20.

Synthesis of 3-(2-methoxyphenyl)-1-(4-nitrophenyl)-5-phenyl-1H-pyrazole (5f)

Compound $\mathbf{5 f}$ was prepared following a procedure similar to that used for $\mathbf{4 d}$. The quantities involved are as follows: 3-(2-methoxyphenyl)-1-phenyl-3-thioxopropan-1-one, (4e) ($5.00 \mathrm{~g}, 14.37 \mathrm{mmol}, 1.0 \mathrm{eq}$), and 4-nitrophenylhydrazine ($2.20 \mathrm{~g}, 18.51$ mmol, 1.3 eq). The product (5f) was purified using silica gel column chromatography (n-hexane/EtOAc (96:4)). Yield: 3.32 g (62%). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.00(\mathrm{~m}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.2,150.6,145.8,145.0,144.0,130.4,129.9,129.07$ (2C), 129.01 (2C), 124.6, 124.5, 121.1, 121.1, 111.4, 111.4, 55.6. HR-MS (ESI): calculated for $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 394.1168$, observed : 394.1163.

Compound $\mathbf{5 e}$ was prepared following a procedure similar to that used for $\mathbf{1 c}$. The quantities involved are as follows: 3-(2-Methoxyphenyl)-1-(4-nitrophenyl)-5-phenyl-1 H -pyrazole ($\mathbf{5 f}$) ($2.30 \mathrm{~g}, 6.12 \mathrm{mmol}, 1.0 \mathrm{eq}$) and N -bromosuccinimide (1.31 $\mathrm{g}, 7.35 \mathrm{mmol}, 1.2 \mathrm{eq})$. The product ($\mathbf{5 e}$) was purified using silica gel column chromatography (n-hexane/EtOAc (94:6)). Yield: $2.28 \mathrm{~g}(83 \%)$. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17-8.11(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{dd}, 8.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz} 1 \mathrm{H}), 7.49-7.44(\mathrm{~m}$, $6 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.01(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 157.6,151.2,146.0,144.6,141.5,131.7,130.9,130.2,129.7,129.1,128.7,124.5,124.2$, 120.7, 120.4, 111.4, 100.2, 55.7. HR-MS (ESI): calculated for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 472.0267$, 474.0248 observed : 472.0281, 474.0263 .

Synthesis of 3-(2-methoxyphenyl)-1-(4-nitrophenyl)-4,5-diphenyl-1H-pyrazole (5d)

Compound $\mathbf{5 d}$ was prepared following a procedure similar to that used for $\mathbf{1 b}$. The quantities involved are as follows: 4-bromo-3-(2-methoxyphenyl)-1-(4-nitrophenyl)-5-phenyl-1H-pyrazole (5e) $(1.55 \mathrm{~g}, 3.70 \mathrm{mmol}, 1.0 \mathrm{eq}), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(0.13 \mathrm{~g}, 0.11 \mathrm{mmol}, 0.035 \mathrm{eq})$, phenylboronic acid ($0.58 \mathrm{~g}, 4.81 \mathrm{mmol}, 1.3 \mathrm{eq}$), Sodium carbonate ($1.17 \mathrm{~g}, 11.10 \mathrm{mmol}, 3.0 \mathrm{eq}$). The product ($\mathbf{5 d}$) was purified using silica gel column chromatography (n-hexane/EtOAc (96:4)). Yield: 1.52 g $(92 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.48$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15$ $-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.0,150.7,145.7,144.9,140.4,133.2,131.5,130.6,130.2,129.8,129.1$, 129.0, 129.0, 127.9, 126.4, 124.7, 124.4, 121.9, 120.9, 115.4, 111.3, 54.9. HR-MS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 448.1661$, observed : 448.1631.

Synthesis of 4-(3-(2-methoxyphenyl)-4,5-diphenyl-1H-pyrazol-1-yl)aniline (5c)

Compound $5 \mathbf{c}$ was prepared following a procedure similar to that used for $\mathbf{2 c}$. The quantities involved are as follows: 3-(2-Methoxyphenyl)-1-(4-nitrophenyl)-4,5-diphenyl-1H-pyrazole (5d) ($5.60 \mathrm{~g}, 12.6 \mathrm{mmol}, 1.0 \mathrm{eq}$), hydrazine hydrate (6.2 mL , $126.00 \mathrm{mmol}, 10.0 \mathrm{eq})$, and $\mathrm{Pd} / \mathrm{C}(0.13 \mathrm{~g}, 1.26 \mathrm{mmol}, 0.1 \mathrm{eq})$. The product ($\mathbf{5 c}$) was purified using silica gel column chromatography (n-hexane/EtOAc (70:30)). Yield: $5.05 \mathrm{~g}(96 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{td}, J=$ $7.9,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.07(\mathrm{~m}, 7 \mathrm{H}), 7.00(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 157.0$, $148.1,145.6,139.9,134.5,131.8,131.5,130.7,130.5,129.5,129.2,128.2,127.9,127.7,126.8,125.8$, $122.9,121.2,120.8,114.9,111.1,54.8$. HR-MS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 418.1914$, observed : 418.1931.

Synthesis of 4-(3-(2-methoxyphenyl)-4,5-diphenyl-1H-pyrazol-1-yl)-N,N-dimethylaniline

(5b): Compound $\mathbf{5 b}$ was prepared following a procedure similar to that used for 2b. The quantities involved are as follows: 4-(3-(2-Methoxyphenyl)-4,5-diphenyl-1H-pyrazol-1-yl)aniline (5c) ($1.90 \mathrm{~g}, 4.56 \mathrm{mmol}, 1.0 \mathrm{eq}$), sodium cyanoborohydride ($1.4 \mathrm{~g}, 21.96 \mathrm{mmol}, 4.8 \mathrm{eq}$), 37% formaldehyde solution (5.6 $\mathrm{mL}, 68.43 \mathrm{mmol}, 15.0 \mathrm{eq})$ and acetic acid ($0.52 \mathrm{~mL}, 9.12 \mathrm{mmol}, 2.0 \mathrm{eq})$. The product was purified using silica gel column chromatography (n hexane/EtOAc/CH2 $\mathrm{Cl}_{2}(80: 10: 10)$). Yield: $1.83 \mathrm{~g}(90 \%)$. ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.12(\mathrm{~m}$, $7 \mathrm{H}), 7.04(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.66(\mathrm{~m}, 2 \mathrm{H})$, $3.24(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.0$, 149.5, 148.0, 139.9, 134.7, 131.9, 130.8, 130.7, 129.8, 129.4, 129.2, 128.2, 127.8, 127.7, 126.4, 125.7, 123.1, 121.2, 120.8, 112.1, 111.2, 54.8, 40.6. HR-MS (ESI): calculated for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 446.2227$, observed : 446.2252.

Synthesis of 2-(1-(4-(dimethylamino)phenyl)-4,5-diphenyl-1H-pyrazol-3-yl)phenol (5a):

Compound 5a was prepared following a procedure similar to that used for 1a. The quantities involved are as follows: Compound $\mathbf{5 b}(1.00 \mathrm{~g}, 2.24 \mathrm{mmol}$, $1.0 \mathrm{eq})$ and $\mathrm{BBr}_{3}(1.06 \mathrm{~mL}, 11.2 \mathrm{mmol}, 5.0 \mathrm{eq})$. The product (5a) was purified using silica gel column chromatography (n-hexane/EtOAc (94:06)). Crystallisation was done using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane. Yield: $0.88 \mathrm{~g}(92 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=11.09(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.12$ $(\mathrm{m}, 8 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 4 \mathrm{H}), 6.65-6.55(\mathrm{~m}, 3 \mathrm{H}), 2.97(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=156.5,149.7,147.4,141.5,135.3,133.5,131.1,130.5$, 129.6, 129.0, 128.7, 128.6, 128.2, 127.2, 126.0, 120.2, 118.7, 117.4, 117.1, 116.9, 111.9, 40.5. HR-MS (ESI): calculated for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 432.2070$, observed: 432.2076.

Synthesis of complex 5: Compound 5 was prepared following a procedure similar to that used
 for 1. The quantities involved are as follows: Compound $\mathbf{5 a}(0.30 \mathrm{~g}$, $0.69 \mathrm{mmol}, 1.0 \mathrm{eq}$) and tris(pentafluorophenyl)borane ($0.39 \mathrm{~g}, 0.76$ $\mathrm{mmol}, 1.2$ eq). Crystallisation was done using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane. Yield: $0.34 \mathrm{~g}(63 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.42-7.31(\mathrm{~m}$, $5 \mathrm{H}), 7.30-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.94(\mathrm{~m}, 2 \mathrm{H})$, $6.93-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.60(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.87(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=155.6,150.9,148.1(\mathrm{~d}$, $J=245.43 \mathrm{~Hz}), 147.3,142.3,142.2(\mathrm{~d}, J=233.31), 137.0(\mathrm{~d}, J=$ 250.48), 132.2, 131.0, 130.7, 130.5, 129.5, 129.1, 128.5, 128.4, 126.7, 126.6, 123.1, 119.7, 118.7, 115.3, 111.4, 40.3. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-132.53$ (bs, 4F, Pf), 157.63 (t, 2F, Pf), $-164.42(\mathrm{~s}, 4 \mathrm{~F}, \mathrm{Pf}) .{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-0.77$. HR-MS (ESI): calculated for $\mathrm{C}_{41} \mathrm{H}_{25} \mathrm{BF}_{10} \mathrm{~N}_{3} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 776.1967$, observed : 776.2001. Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{24} \mathrm{BF}_{10} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}$, 63.50; H, 3.12, N, 5.42. Found: C, 64.02; H, 3.27, N, 5.82.

Synthesis of 4-(3-(2-methoxyphenyl)-4,5-diphenyl-1H-pyrazol-1-yl)-N,N-diphenylaniline

($\mathbf{6 b}$): Compound $\mathbf{6 b}$ was prepared following a procedure similar to that used for $\mathbf{3 b}$. 4-(3-(2-Methoxyphenyl)-4,5-diphenyl-1H-pyrazol-1yl)aniline (5 c) $(5.20 \mathrm{~g}, 12.47 \mathrm{mmol}, 1.0 \mathrm{eq})$, iodobenzene ($4.20 \mathrm{~mL}, 37.27$ mmol, 3.0 eq), copper iodide ($0.14 \mathrm{~g}, 0.74 \mathrm{mmol}, 0.02 \mathrm{eq}$), $1,10-$ phenanthroline monohydrate ($0.15 \mathrm{~g}, 0.74 \mathrm{mmol}, 0.02 \mathrm{eq}$), and potassium tert-butoxide ($4.20 \mathrm{~g}, 37.27 \mathrm{mmol}, 3.0 \mathrm{eq}$). The product ($\mathbf{6 b}$) was purified using silica gel column chromatography (n-hexane/EtOAc/CH2 Cl_{2} (80:10:10)). Yield: $6.09 \mathrm{~g}(86 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 7 \mathrm{H}), 7.21-$ $7.17(\mathrm{~m}, 4 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 8 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.96(\mathrm{~m}, 4 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.0,148.7,147.6,146.8,139.5,134.4$, 134.4, 131.9, 130.7, 130.5, 129.6, 129.4, 129.2, 128.3, 128.2, 127.8, 126.4, 125.9, 124.6, 123.2,
122.8, 121.7, 120.8, 117.4, 111.2, 54.8. HR-MS (ESI): calculated for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 570.2540, observed : 570.2564.

Synthesis of 2-(1-(4-(diphenylamino)phenyl)-4,5-diphenyl-1H-pyrazol-3-yl)phenol (6a):

Compound 6a was prepared following a procedure similar to that used for 1a. The quantities involved are as follows: Compound $\mathbf{6 b}(1.50 \mathrm{~g}, 2.63$ $\mathrm{mmol}, 1.0 \mathrm{eq}), \mathrm{BBr}_{3}(1.25 \mathrm{~mL}, 13.18 \mathrm{mmol}, 5.0 \mathrm{eq})$. The product ($6 \mathbf{a}$) was purified using silica gel column chromatography (n-hexane/EtOAc (94:06)). Crystallisation was done using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane. Yield: $1.0 \mathrm{~g}(69 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=11.01(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 7.30-7.18(\mathrm{~m}, 12 \mathrm{H}), 7.16$ $-7.01(\mathrm{~m}, 13 \mathrm{H}), 6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=156.4,147.8,147.3,147.3,141.6,133.2,132.5$, $131.0,130.4,129.5,129.4,129.2,128.6,128.5,128.3,128.3,127.4,125.7$, 124.9, 123.6, 122.6, 120.7, 118.8, 117.1, 116.7. HR-MS (ESI): calculated for $\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}$ ([M+H]+): 556.2389, observed : 556.2392.

Synthesis of complex 6: Compound 6 was prepared following a procedure similar to that used
 for 1. The quantities involved are as follows: Compound $\mathbf{6 a}(0.30 \mathrm{~g}$, $0.54 \mathrm{mmol}, 1.0 \mathrm{eq}$) and tris(pentafluorophenyl)borane ($0.33 \mathrm{~g}, 0.64$ $\mathrm{mmol}, 1.2 \mathrm{eq}$) Crystallisation was done using CHCl_{3} / n-hexane. Yield: $0.25 \mathrm{~g}(52 \%),{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.40-7.35(\mathrm{~m}, 3 \mathrm{H})$, $7.36-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.05-$ $6.95(\mathrm{~m}, 8 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.64-6.58(\mathrm{~m}, 1 \mathrm{H}), 6.54(\mathrm{~d}$, $J=8.0,2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=155.5,149.4,148.3$ (d, $J=282.8 \mathrm{~Hz}) 147.3,146.1,142.3,140.0(\mathrm{~d}, J=274.72 \mathrm{~Hz}), 139.8$, $137.2(\mathrm{~d}, J=226.24 \mathrm{~Hz}) 133.0,132.3,130.9,130.5,129.9,129.6$, 129.1, 128.9, 128.6, 129.5, 128.4, 127.3, 126.7, 126.2, 125.2, 124.7, 119.7, 119.7, 118.9, 118.7. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-134.27$ (bs, 4F, Pf), $-156.85(\mathrm{t}, 2 \mathrm{~F}, \mathrm{Pf}),-163.79(\mathrm{t}, 4 \mathrm{~F}, \mathrm{Pf}) .{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-0.85$. HR-MS (ESI): calculated for $\mathrm{C}_{51} \mathrm{H}_{29} \mathrm{BF}_{10} \mathrm{~N}_{3} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 900.2358, observed : 900.2347. Anal. Calcd for $\mathrm{C}_{51} \mathrm{H}_{28} \mathrm{BF}_{10} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 68.09$; H, 3.14, N, 4.67. Found: C, 67.89; H, 3.32, N, 4.27.

Figure S1. Molecular structures of compounds 5 with 30% probability level of thermal ellipsoids (hydrogen atoms are omitted for clarity).

Table S1. Bond length, bond angle and plane deviation measurement data for compounds $\mathbf{1 , 4}$, and 5.

Compound	1	4	5
B-N1 (A)	1.596 (2)	1.603 (2)	1.577 (10)
B-O (® $^{\text {) }}$	1.474 (2)	1.462 (2)	1.468 (12)
B-C3 (A)	1.644 (2)	1.626 (3)	1.646 (10)
B-C4 (8)	1.627 (2)	1.650 (3)	1.659 (10)
N1-B-O (deg)	105.1 (1)	104.2 (1)	104.4 (6)
N1-B-C3 (deg)	109.7 (1)	111.8 (1)	110.7 (6)
O-B-C4 (deg)	107.1 (1)	108.8 (1)	105.1 (6)
C3-B-C4 (deg)	117.3 (1)	114.8 (1)	116.4 (5)
Deviation of B from $\mathrm{N}_{2} \mathrm{C}_{2} \mathrm{OB}$ plane (Å)	0.405 (1)	-	-
Deviation of B from $\mathrm{NC}_{3} \mathrm{OB}$ plane (A)	-	0.354 (1)	0.343 (1)
Angle between pyrazole ring and plane $\mathbf{A}\left({ }^{\circ}\right)$	62.7 (5)	11.1 (6)	14.2 (2)
Angle between pyrazole ring and plane $B\left({ }^{\circ}\right)$	45.2 (5)	82.2 (7)	60.9 (3)
Angle between pyrazole ring and plane $\mathbf{C}\left({ }^{\circ}\right)$	58.6 (4)	54.7 (7)	41.5 (3)
Angle between pyrazole ring and plane $D\left({ }^{\circ}\right)$	26.5 (5)	85.8 (8)	78.5 (3)

Table S2. Photophysical data of compound 1-6 in different solvents

Compound	Solvent	$\begin{aligned} & \lambda_{\mathrm{abs}}{ }^{a} / \mathrm{nm}\left(\varepsilon \times 10^{4} / \mathrm{M}^{-1}\right. \\ & \left.\mathrm{cm}^{-1}\right) \end{aligned}$	$\lambda_{\text {ems }}{ }^{\text {b }}$ (nm)	Stokes Shift $\left(\mathrm{cm}^{-1}\right)$	¢F $^{\text {d }}$ (\%)	$\tau_{\text {av }}$ (ns)
1	Toluene	312 (1.28)	506	12289	4.6,	
	THF	307 (1.18)	515	19417	$1.4(5.6)^{f}$	1.3
	ACN	307 (1.17)	517	13231	0.5	
			$380{ }^{\text {c }}$		$3.7{ }^{\text {e }}$	
2	Toluene	356 (1.42)	500	8089	1.7,	
	THF	352 (1.85)	533	9648	$0.5(41.6)^{f}$	2.8
	ACN	348 (1.71)	555	10717	0.7	
			$485{ }^{\text {c }}$		$30.8{ }^{e}$	
3	Toluene	367 (1.86)	477	6283	16.4,	
	THF	365 (1.56)	508	7712	$14.0(32.1)^{f}$	1.6
	ACN	360 (1.73)	541	9293	12.0	
			$(452,549)^{c}$		$11.8{ }^{e}$	
4	Toluene	323 (0.74)	434	7918	20.4,	
	THF	319 (1.00)	440	8620	$18.9(19.6)^{f}$	3.8
	ACN	318 (1.04)	446	9025	14.5	
			$380{ }^{\text {c }}$		$5.4{ }^{e}$	
5	Toluene	318 (1.81)	438	8615	<0.1	
	THF	318 (1.27)	475	10394	$<0.1(15.5)^{f}$	-
	ACN	316 (1.44)	500	11645	0.2	
			$408{ }^{\text {c }}$		28.2^{e}	
6	Toluene	328 (1.99)	432	7339	4.0,	
	THF	324 (1.65)	446	8443	$1.6(29.6)^{f}$	2.9
	ACN	320 (1.99)	468	9883	5.3	
			$438{ }^{\text {c }}$		$23.2{ }^{e}$	

${ }^{a}$ Absorption maximum (concentration $=5.0 \times 10^{-5} \mathrm{M}$), ${ }^{b}$ excited at $\lambda_{\max },{ }^{c}$ solid state emission maxima, ${ }^{d}$ absolute quantum yield using integrating sphere module, ${ }^{\mathrm{e}}$ Solid state quantum yield using integrating sphere module, ${ }^{f}$ absolute quantum yield of $\operatorname{AIE}(99: 1)\left(\mathrm{H}_{2} \mathrm{O}:\right.$ THF $)$ of using integrating sphere module.

Table S3. Fluorescence lifetime of compound 1-6 in THF with concentration of $5.0 \times 10^{-5} \mathrm{M}$.

Compound	$\mathbf{B}_{\mathbf{1}}$	$\boldsymbol{\tau}_{\mathbf{1}}(\mathbf{n s})$
$\mathbf{1}$	1.00	1.3
$\mathbf{2}$	1.00	0.2
$\mathbf{3}$	1.00	1.6
$\mathbf{4}$	1.00	3.9
$\mathbf{5}$	1.00	2.2
$\mathbf{6}$	1.00	0.9

B_{1} represent the fractional amount of molecules in each environment.
Table S4. Fluorescence lifetime of compound 1-6 in water fraction $\left(f_{w}=99 \%\right)$ with concentration of 5.0 x $10^{-5} \mathrm{M}$.

Compounds	$\mathbf{B}_{1} / \mathbf{B}_{2} / \mathbf{B}_{\mathbf{3}}$	$\boldsymbol{\tau}_{\mathbf{1}}(\mathbf{n s})$	$\boldsymbol{\tau}_{\mathbf{2}}(\mathbf{n s})$	$\boldsymbol{\tau}_{\mathbf{3}}(\mathbf{n s})$
$\mathbf{1}$	$0.78 / 0.22 / 0$	0.6	3.1	-
$\mathbf{2}$	$0.26 / 0.74 / 0$	3.8	7.9	-
$\mathbf{2}$ (Thin film)	$0.16 / 0.84$	2.2	5.2	-
$\mathbf{3}$	$0.26 / 0.64 / 0.10$	1.5	4.9	16.1
$\mathbf{4}$	$0.47 / 0.53 / 0$	1.6	4.4	-
$\mathbf{5}$	$0.18 / 0.56 / 0.26$	1.4	4.4	10.0
$\mathbf{6}$	$0.51 / 0.49 / 0$	2.3	6.1	-

$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3}$ represent the fractional amount of molecules in each environment.

Figure S2: Absorption spectra of compounds 1-6 (Left) and normalized emission spectra of compounds 1-6 (Right) in toluene ($5.0 \times 10^{-5} \mathrm{M}$ concentration) inset (Right): photograph of compounds 1-6 taken under hand-held UV lamp 365nm.

Figure S3: Absorption spectra of compounds 1-6 (Left) and normalized emission spectra of compounds 1-6 (Right) in acetonitrile ($5.0 \times 10^{-5} \mathrm{M}$ concentration) inset (Right): photograph of compounds 1-6 taken under hand-held UV lamp 365 nm .

Figure S4: Fluorescence spectra of compound $\mathbf{1}\left(5.0 \times 10^{-5} \mathrm{M}\right)$ in a $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixture with different water fraction (f_{w}) (left). I/I I_{o} vs water fraction plot for compound $\mathbf{1}$ (vol\%) (right).

Figure S5: Fluorescence spectra of compound $3\left(5.0 \times 10^{-5} \mathrm{M}\right)$ in a $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixture with different water fraction (f_{w}) (left). I/ I_{o} vs water fraction plot for compound $\mathbf{3}$ (vol\%) (right).

Figure S6: Fluorescence spectra of compound $4\left(5.0 \times 10^{-5} \mathrm{M}\right)$ in a $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixture with different water fraction (f_{w}) (left). $\mathrm{I} / \mathrm{I}_{\mathrm{o}}$ vs water fraction plot for compound 4 (vol\%) (right).

Figure S7: Fluorescence spectra of compound $5\left(5.0 \times 10^{-5} \mathrm{M}\right)$ in a $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixture with different water fraction $\left(\mathrm{f}_{\mathrm{w}}\right)$ (left). $\mathrm{I} / \mathrm{I}_{\mathrm{o}}$ vs water fraction plot for compound 5 (vol\%) (right).

Figure S8: Fluorescence spectra of compound $6\left(5.0 \times 10^{-5} \mathrm{M}\right)$ in a $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixture with different water fraction $\left(\mathrm{f}_{\mathrm{w}}\right)(\mathrm{left}) . \mathrm{I} / \mathrm{I}_{\mathrm{o}}$ vs water fraction plot for compound 6 (vol\%) (right).

Figure S9: Emission spectra of compound 1 (Left) and compound 2 (Right) with the addition of

Figure S10: Emission spectra of compound 3 (Left) and Compound 4 (Right) with the addition of different percentage of $\mathrm{MeOH} / E t h y l e n e ~ g l y c o l ~ o r ~ D i e t h y l e n e ~ g l y c o l ~ m i x t u r e ~(~ 10-5 ~ M ~ c o n c e n t r a t i o n) . ~$.

Figure S11: Emission spectra of compound 5 (Left) and Compound 6 (Right) with the addition of different percentage of $\mathrm{MeOH} /$ Diethylene glycol mixture ($10^{-5} \mathrm{M}$ concentration).

Figure S12: Emission spectra of compound 1 (Left) and Compound 2 (Right) with the addition of different equivalents of picric acid in dichloromethane ($10^{-5} \mathrm{M}$ concentration).

Figure S13: Emission spectra of compound 3 (Left) and Compound 4 (Right) with the addition of different equivalents of picric acid in dichloromethane ($10^{-5} \mathrm{M}$ concentration).

Figure S14: Emission spectra of compound 5 (Left) and Compound 6 (Right) with the addition of different equivalents of picric acid in dichloromethane ($10^{-5} \mathrm{M}$ concentration).

Figure S15: Stern-Volmer plot of compound 1 (Left) and 2 (Right).

Figure S16: Stern-Volmer plot of compound 3 (Left) and 4 (Right).

Figure S17: Stern-Volmer plot of compound 5 (Left) and 6 (Right).

Figure S18: Solid-state emission spectra of pyrazole compound 1-6.

Table S5. Crystal data and structure refinement for Compound 1, 4, 5.

	Compound 1	Compound 4	Compound 5
Empirical formula	$\mathrm{C}_{39} \mathrm{H}_{19} \mathrm{BF}_{10} \mathrm{~N}_{2} \mathrm{O}$	$\mathrm{C}_{40} \mathrm{H}_{20} \mathrm{BCl}_{3} \mathrm{~F}_{10} \mathrm{~N}_{2} \mathrm{O}$	$\mathrm{C}_{41} \mathrm{H}_{24} \mathrm{BF}_{10} \mathrm{~N}_{3} \mathrm{O}$
Formula weight	732.37	851.74	775.44
Temperature/K	100.00(10)	299.6(9)	113(18)
Crystal system	triclinic	triclinic	monoclinic
Space group	P-1	P-1	P2 ${ }_{1}$
a/Å	7.88670(10)	8.8799(2)	12.4589(13)
b/Å	13.1605(3)	14.0601(3)	12.9868(9)
c/Å	17.5175(4)	16.9083(3)	12.6311(11)
$\alpha /{ }^{\circ}$	109.877(2)	75.691(2)	90
$\beta /{ }^{\circ}$	90.082(2)	81.675(2)	107.763(10)
7^{10}	107.239(2)	78.457(2)	90
Volume/ ${ }^{3}$	1622.45(6)	1994.05(8)	1946.3(3)
Z	2	2	2
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.499	1.419	1.323
μ / mm^{-1}	0.130	2.808	0.113
F(000)	740.0	856.0	788.0
Crystal size/mm ${ }^{3}$	$0.15 \times 0.12 \times 0.11$	$0.14 \times 0.13 \times 0.11$	$0.14 \times 0.12 \times 0.11$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ}$	6.94 to 49.998	7.53 to 156.84	6.668 to 52.732
Index ranges	$\begin{aligned} & -9 \leq \mathrm{h} \leq 9,-15 \leq \mathrm{k} \leq 15,- \\ & 20 \leq 1 \leq 20 \end{aligned}$	$\left\{\begin{array}{l} -11 \leq \mathrm{h} \leq 11,-17 \leq \mathrm{k} \leq \\ 17,-20 \leq 1 \leq 20 \end{array}\right.$	$\begin{aligned} & -15 \leq \mathrm{h} \leq 14,-15 \leq \mathrm{k} \leq \\ & 16,-15 \leq 1 \leq 15 \end{aligned}$
Reflections collected	22626	37407	32402
Independent reflections	$\begin{aligned} & 5704\left[\mathrm{R}_{\text {int }}=0.0314, \mathrm{R}_{\text {sigma }}\right. \\ & =0.0223] \end{aligned}$	$\begin{aligned} & 8039\left[\mathrm{R}_{\text {int }}=0.0632,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0320\right] \end{aligned}$	$\begin{aligned} & 7671\left[\mathrm{R}_{\text {int }}=0.1186,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0627\right] \end{aligned}$
Data/restraints/parameters	5704/0/478	8039/0/479	7671/1107/516
Goodness-of-fit on F^{2}	1.035	1.082	1.066
Final R indexes [$1>=2 \sigma$ (I]	$\begin{aligned} & \mathrm{R}_{1}=0.0332, \mathrm{wR}_{2}= \\ & 0.0871 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0583, \mathrm{wR}_{2}= \\ & 0.1726 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0859, \mathrm{wR}_{2}= \\ & 0.1948 \end{aligned}$
Final R indexes [all data]	$\begin{aligned} & \mathrm{R}_{1}=0.0361, \mathrm{wR}_{2}= \\ & 0.0892 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0673, \mathrm{wR}_{2}= \\ & 0.1823 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0927, \mathrm{wR}_{2}= \\ & 0.2002 \end{aligned}$
Largest diff. peak/hole /e \AA^{-3}	0.30/-0.23	0.21/-0.27	0.49/-0.38
Flack parameter	-	-	-1.3(5)

Figure S19: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 1 d in CDCl_{3}

Figure S20: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 1 d in CDCl_{3}

Figure S21: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 1 c in CDCl_{3}

Figure S22: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 1 c in CDCl_{3}

Figure S23: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 1 b in CDCl_{3} (*Toluene $-\mathrm{CH}_{3}$ peak)

Figure S24: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 1 b in CDCl_{3}

Figure S25: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 1a in $\mathrm{CDCl}_{3}\left(* \mathrm{H}_{2} \mathrm{O}\right.$ peak)

Figure S26: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 1a in CDCl_{3}

Figure S27: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 1 in $\mathrm{CDCl}_{3}\left(*\right.$ Toluene $\left.-\mathrm{CH}_{3}\right)$

Figure S28: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 1 in CDCl_{3}

Figure S29: ${ }^{19} \mathrm{~F}-\mathrm{NMR}(376 \mathrm{MHz})$ spectrum of compound 1 in CDCl_{3}

Figure S30: ${ }^{11} \mathrm{~B}-\mathrm{NMR}(128 \mathrm{MHz})$ spectrum of compound 1 in CDCl_{3}

Figure S31: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 2 f in $\mathrm{CDCl}_{3}\left(* \mathrm{H}_{2} \mathrm{O}\right.$ peak)

Figure S32: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 2 f in CDCl_{3}

Figure S33: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 2e in CDCl_{3}

Figure S34: ${ }^{13} \mathrm{C}$-NMR (101 MHz) spectrum of compound 2e in CDCl_{3}

Figure S35: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 2 d in CDCl_{3}

Figure S36: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 2 d in CDCl_{3}

Figure S37: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 2 c in CDCl_{3}

Figure S38: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 2 c in CDCl_{3}

Figure S39: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 2 b in CDCl_{3} (*Toluene $-\mathrm{CH}_{3}$ peak)

Figure S40: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 2 b in CDCl_{3}

Figure S42: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 2a in CDCl_{3}

Figure S43: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 2 in $\mathrm{CDCl}_{3}\left(*\right.$ Toluene $\left.-\mathrm{CH}_{3}\right)\left({ }^{\#} \mathrm{H}_{2} \mathrm{O}\right)$

Figure S44: ${ }^{13} \mathrm{C}-\mathrm{NMR}(176 \mathrm{MHz})$ spectrum of compound 2 in CDCl_{3}

Figure S45: ${ }^{19} \mathrm{~F}-\mathrm{NMR}(376 \mathrm{MHz})$ spectrum of compound 2 in CDCl_{3}
$\xrightarrow[\text { n }]{\substack{\infty \\ i}}$

Figure S46: ${ }^{11} \mathrm{~B}-\mathrm{NMR}(128 \mathrm{MHz})$ spectrum of compound 2 in CDCl_{3}

Figure S47: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 3 b in $\mathrm{CDCl}_{3}\left(* \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ peak \& ${ }^{\#} \mathrm{H}_{2} \mathrm{O}$ peak)

Figure S48: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 3 b in CDCl_{3}

Figure S49: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 3 a in CDCl_{3} (${ }^{*} \mathrm{H}_{2} \mathrm{O}$ peak)

Figure S50: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 3a in CDCl_{3}

Figure S51: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 3 in $\mathrm{CDCl}_{3}\left(* \mathrm{H}_{2} \mathrm{O}\right.$ peak)

Figure S52: ${ }^{13} \mathrm{C}$-NMR (176 MHz) spectrum of compound 3 in CDCl_{3}

Figure S53: ${ }^{19} \mathrm{~F}-\mathrm{NMR}(376 \mathrm{MHz})$ spectrum of compound 3 in CDCl_{3}

N
$\underset{i}{1}$
i

Figure S54: ${ }^{11} \mathrm{~B}-\mathrm{NMR}(128 \mathrm{MHz})$ spectrum of compound 3 in CDCl_{3}

Figure S55: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 4 f in $\mathrm{CDCl}_{3}\left(* \mathrm{H}_{2} \mathrm{O}\right.$ peak)
N

[^0]Figure S56: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 4 f in CDCl_{3}

Figure S57: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 4 d in CDCl_{3} (*Acetone peak)

Figure S58: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 4 d in CDCl_{3}

Figure S59: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 4 c in CDCl_{3}

			끙
in		$\stackrel{\text { ¢ }}{\stackrel{\sim}{\circ}}$	
1	\|	O	

Figure S60: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 4 c in CDCl_{3}

Figure S61: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 4 b in CDCl_{3}

Figure S62: ${ }^{13} \mathrm{C}$-NMR (101 MHz) spectrum of compound 4 b in CDCl_{3}

Figure S63: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 4 a in CDCl_{3}

Figure S64: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 4 a in CDCl_{3}

Figure S65: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 4 in CDCl_{3}

$\begin{array}{lllllllll}150 & 148 & 146 & 144 & 142 & 140 & 138 & 136\end{array}$ ppm

Figure S66: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 4 in CDCl_{3}

Figure S67: ${ }^{19} \mathrm{~F}-\mathrm{NMR}(376 \mathrm{MHz})$ spectrum of compound 4 in CDCl_{3}

$$
\begin{aligned}
& \text { O} \\
& i \\
& i \\
& \hline
\end{aligned}
$$

Figure S68: ${ }^{11} \mathrm{~B}-\mathrm{NMR}(128 \mathrm{MHz})$ spectrum of compound 4 in CDCl_{3}

Figure S69: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 5 f in CDCl_{3}

Figure S70: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 5 f in CDCl_{3}

Figure S71: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 5e in CDCl_{3}

Figure S72: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 5 e in CDCl_{3}

Figure S73: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 5 d in CDCl_{3}

Figure S74: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 5 d in CDCl_{3}

Figure S75: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 5 c in CDCl_{3}

```
@(M)
```


$\stackrel{m}{\underset{\sim}{\check{m}}}$

Figure S76: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 5 c in CDCl_{3}

Figure S77: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 5 b in CDCl_{3}

Figure S78: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 5 b in CDCl_{3}

Figure S79: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 5 a in CDCl_{3}

Figure S80: ${ }^{13} \mathrm{C}$-NMR (101 MHz) spectrum of compound 5a in CDCl_{3}

Figure S81: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 5 in CDCl_{3}

Figure S82: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 5 in CDCl_{3}

Figure S83: ${ }^{19} \mathrm{~F}-\mathrm{NMR}(376 \mathrm{MHz})$ spectrum of compound 5 in CDCl_{3}

$$
\begin{aligned}
& \text { A } \\
& i \\
& i \\
& i
\end{aligned}
$$

450	400	350	300	250	200	150	100	50	$\begin{gathered} 0 \\ \text { ppm } \end{gathered}$	-50	-100	-150	-200	-250	-300	-350	-400	-451

Figure S84: ${ }^{11} \mathrm{~B}-\mathrm{NMR}(128 \mathrm{MHz})$ spectrum of compound 5 in CDCl_{3}

Figure S85: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 6 b in $\mathrm{CDCl}_{3}\left(* \mathrm{H}_{2} \mathrm{O}\right.$ peak)

$\begin{array}{lllllllllll}155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110\end{array}$ ppm

Figure S86: ${ }^{13} \mathrm{C}$-NMR $(101 \mathrm{MHz})$ spectrum of compound 6 b in CDCl_{3}

Figure S87: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 6a in $\mathrm{CDCl}_{3}\left(* \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ peak)

$\begin{array}{lllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
Figure S88: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 6a in CDCl_{3}

Figure S89: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ spectrum of compound 6 in CDCl_{3} (*grease peak)

Figure S90: ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz})$ spectrum of compound 6 in CDCl_{3}

Figure S91: ${ }^{19} \mathrm{~F}-\mathrm{NMR}(376 \mathrm{MHz})$ spectrum of compound 6 in CDCl_{3}

Figure S92: ${ }^{11} \mathrm{~B}-\mathrm{NMR}(128 \mathrm{MHz})$ spectrum of compound 6 in CDCl_{3}

DFT calculations were performed with the Gaussian 16 program. ${ }^{2}$ The structures were optimized using $6-31 G(d, p)(B 3 L Y P)$ as the basis set. Frequency calculations confirmed the optimized structures to be local minimum structures. Excitation data were determined using TD-DFT (B3LYP/631g(d,p)) calculations.

Table S6. Calculated electronic transitions for compound 1-6

Compound	Transition	MO contributions	Energy gap $\mathrm{eV}(\mathrm{nm})$	Oscillator strength/f
$\mathbf{1}$	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$			
$\mathrm{~S}_{0} \rightarrow \mathrm{~S}_{2}$				
$\mathrm{~S}_{0} \rightarrow \mathrm{~S}_{3}$	HOMO \rightarrow LUMO	$3.74(331)$ HOMO-1 \rightarrow LUMO HOMO-3 \rightarrow LUMO HOMO-2 \rightarrow LUMO	$4.07(304)$	$0.15(298)$

4	$\begin{aligned} & \mathrm{S}_{0} \rightarrow \mathrm{~S}_{1} \\ & \mathrm{~S}_{0} \rightarrow \mathrm{~S}_{2} \\ & \mathrm{~S}_{0} \rightarrow \mathrm{~S}_{3} \end{aligned}$	$\begin{aligned} & \mathrm{HOMO} \rightarrow \mathrm{LUMO} \\ & \mathrm{HOMO}-3 \rightarrow \mathrm{LUMO} \\ & \mathrm{HOMO} \rightarrow \mathrm{LUMO}+1 \\ & \mathrm{HOMO} \rightarrow \mathrm{LUMO}+2 \\ & \mathrm{HOMO}-1 \rightarrow \mathrm{LUMO} \end{aligned}$	$\begin{aligned} & 3.63(341) \\ & 4.16(297) \end{aligned}$ $4.24(292)$	$\begin{aligned} & 0.0659 \\ & 0.0398 \\ & \\ & 0.0021 \end{aligned}$
5	$\begin{aligned} & \mathrm{S}_{0} \rightarrow \mathrm{~S}_{1} \\ & \mathrm{~S}_{0} \rightarrow \mathrm{~S}_{2} \\ & \mathrm{~S}_{0} \rightarrow \mathrm{~S}_{3} \end{aligned}$	$\begin{aligned} & \text { HOMO } \rightarrow \text { LUMO } \\ & \text { HOMO-1 } \rightarrow \text { LUMO } \\ & \text { HOMO-3 } \rightarrow \text { LUMO } \\ & \text { HOMO-1 } \rightarrow \text { LUMO+1 } \\ & \text { HOMO } \rightarrow \text { LUMO+1 } \end{aligned}$	$\begin{aligned} & 3.65(339) \\ & 3.72(333) \\ & 4.17(297) \end{aligned}$	$\begin{aligned} & 0.0614 \\ & 0.0450 \\ & 0.0388 \end{aligned}$
6	$\begin{aligned} & \mathrm{S}_{0} \rightarrow \mathrm{~S}_{1} \\ & \mathrm{~S}_{0} \rightarrow \mathrm{~S}_{2} \\ & \mathrm{~S}_{0} \rightarrow \mathrm{~S}_{3} \end{aligned}$	$\begin{aligned} & \mathrm{HOMO} \rightarrow \mathrm{LUMO} \\ & \mathrm{HOMO}-1 \rightarrow \mathrm{LUMO} \\ & \mathrm{HOMO} \rightarrow \mathrm{LUMO}+1 \\ & \mathrm{HOMO} \rightarrow \mathrm{LUMO}+2 \\ & \mathrm{HOMO} \rightarrow \mathrm{LUMO}+3 \end{aligned}$	$\begin{aligned} & 3.57(347) \\ & 3.70(334) \\ & 4.00(309) \end{aligned}$	$\begin{aligned} & 0.0761 \\ & 0.0657 \\ & 0.0425 \end{aligned}$

Table S7. Computed orbitals for compounds1-6
Compound

LUMO+2		200 (-0.622)	
LUMO+1			
LUMO		198 (-1.483)	

HOMO	185 (-6.092)		
HOMO-1			
HOMO-2	183 (-6.419)		

Compound

LUMO			230 (-1.403)
HOMO			
HOMO-1			

Compound 1

Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z

F	-0.368062	-1.492600	2.188560
F	-3.799018	-1.322804	-1.108764
F	-0.034264	1.190088	-2.737297
F	-3.462937	1.123353	0.563329
F	-1.901409	-3.066517	3.680968
F	-3.240138	4.613653	-2.559432
F	-4.428613	3.403533	-0.414946
O	-0.970645	-1.239323	-1.857323
N	1.351666	-1.105052	-0.450539
N	0.386146	-0.214161	-0.071892
C	-1.588738	-1.813945	1.684671
C	-3.288231	-1.737921	0.066289
C	-2.008068	-1.322195	0.450237
C	-2.368470	-2.635490	2.498952
C	2.392749	0.604815	0.524251
C	0.997436	0.818451	0.538910
C	0.270634	1.965826	1.126047
C	-1.733778	1.000742	-1.076397
C	0.549177	3.267969	0.683228
H	1.273706	3.421248	-0.109879
C	-0.220945	-2.348220	-1.788684
C	-1.151801	1.674587	-2.156169
C	0.966256	-2.350672	-1.033019
C	-2.758301	3.458210	-2.086183
C	-1.637502	2.874087	-2.668067
C	3.437656	1.500790	1.069188
C	3.857361	-1.279376	-0.484924
C	-0.656053	1.772540	2.160909
H	-0.843774	0.771078	2.527689
C	-2.842249	1.637685	-0.516757
C	-3.360581	2.839097	-0.997281
C	-1.311497	2.866080	2.725689

H	-2.031149	2.706470	3.522588
C	-0.111612	4.355877	1.248872
H	0.100949	5.358975	0.891951
C	-0.597566	-3.517976	-2.458886
H	-1.507890	-3.495289	-3.047931
C	3.364708	1.955168	2.395659
H	2.536274	1.641905	3.022719
C	-1.045353	4.157163	2.268727
H	-1.560738	5.006595	2.706738
C	0.173195	-4.669903	-2.338946
H	-0.131954	-5.574133	-2.856843
C	4.790268	-1.593127	0.514288
H	4.558131	-1.373890	1.551344
C	4.516599	1.914897	0.271917
H	4.581089	1.578425	-0.757832
C	4.166614	-1.553191	-1.826798
H	3.451709	-1.304313	-2.604649
C	6.306254	-2.460764	-1.158293
H	7.254766	-2.920299	-1.419342
C	5.497710	2.759096	0.789848
H	6.324187	3.072200	0.158767
C	4.345556	2.801574	2.910063
H	4.274263	3.143149	3.938413
C	5.385497	-2.140908	-2.158557
H	5.616615	-2.347391	-3.199041
C	6.006852	-2.185157	0.176755
H	6.720413	-2.429282	0.957703
C	5.415380	3.205443	2.109663
H	6.179102	3.864734	2.511328
B	-1.130569	-0.442713	-0.623774
C	-3.633212	-3.016780	2.070224
C	-4.100755	-2.558306	0.841019
F	-4.397069	-3.809123	2.831467
C	2.584549	-0.617575	-0.127870
F	-5.321437	-2.915423	0.417763
F	-1.031810	3.474906	-3.703964
C	1.712832	-3.521108	-0.870751
H	2.591903	-3.525057	-0.239598
C	1.316239	-4.679997	-1.532381
H	1.895688	-5.588993	-1.411461
H			
H			

Rotational constants (GHZ): 0.06717460 .05269440 .0414231

Compound 2

Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
$\begin{array}{llll}\text { F } & 0.539481 & 0.321931 & 2.570374\end{array}$

F	3.784718	-1.081307	-0.619798
F	-0.516492	-0.900233	-2.800964
F	2.030097	-3.218684	0.485168
F	2.458104	0.563782	4.392453
F	0.417969	-5.472761	-3.297397
F	1.791510	-5.459041	-0.932478
O	1.447541	0.467072	-1.429317
N	-0.758405	1.373477	-0.119793
N	-0.462910	0.054045	0.077659
C	1.803585	0.025103	2.170303
C	3.413088	-0.665319	0.606572
C	2.064768	-0.396500	0.868278
C	2.782929	0.156610	3.155150
C	-2.656978	0.359490	0.453734
C	-1.599995	-0.572332	0.442974
C	-1.666308	-2.012185	0.779503
C	0.822728	-1.922857	-1.114804
C	-2.509604	-2.862227	0.047933
H	-3.082564	-2.462725	-0.782515
C	1.391185	1.777766	-1.141459
C	0.112289	-1.992314	-2.318499
C	0.293995	2.285838	-0.422452
C	0.547426	-4.337259	-2.600018
C	-0.031504	-3.159611	-3.062416
C	-4.076322	0.094455	0.779219
C	-2.765265	2.878743	-0.155453
C	-0.935254	-2.529547	1.859105
H	-0.310826	-1.867221	2.446219
C	1.367187	-3.133911	-0.685546
C	1.245812	-4.325770	-1.398521
C	-1.031422	-3.882010	2.185021
H	-0.458356	-4.274410	3.019416
C	-2.597890	-4.213397	0.375247
H	-3.243816	-4.866044	-0.204162
C	2.416818	2.630570	-1.541229
H	3.239657	2.180285	-2.079271
C	-4.424774	-0.545880	1.979331
H	-3.643755	-0.844318	2.671226
C	-1.857297	-4.726628	1.442562
H	-1.926303	-5.780444	1.695205
C	2.387861	4.004224	-1.220532
C	-3.532884	3.459279	0.864836
H	-3.602058	2.965658	1.828601
C	-5.099972	0.474082	-0.103685
H	-4.845613	0.961648	-1.039356
C	-2.688921	3.515102	-1.404858
H	-2.103022	3.066364	-2.200581
C	-4.115860	5.293965	-0.598998
H	-4.638051	6.230439	-0.770744
C	-6.435470	0.223381	0.208000
H	-7.214120	0.521855	-0.487779
C	-5.760714	-0.798570	2.287132
H	-6.011946	-1.294246	3.220185
C	-3.360766	4.716053	-1.622104

H	-3.296589	5.199260	-2.592282
C	-4.201096	4.663104	0.642900
H	-4.788984	5.106116	1.440980
C	-6.770527	-0.413713	1.403782
H	-7.811016	-0.610383	1.644732
B	1.004381	-0.477084	-0.384653
C	4.106105	-0.125642	2.842129
C	4.424473	-0.546450	1.553363
F	5.064093	-0.000978	3.769020
C	-2.091158	1.582932	0.070868
F	5.698505	-0.825174	1.239825
F	-0.729190	-3.162586	-4.209238
C	0.285955	3.627880	-0.036327
H	-0.520443	4.016265	0.572703
C	1.309465	4.477545	-0.428293
H	1.271546	5.509747	-0.107717
N	3.389131	4.856834	-1.645812
C	4.549127	4.317341	-2.336428
H	4.248674	3.765436	-3.233792
H	5.190971	5.140138	-2.653608
H	5.143836	3.640636	-1.704895
C	3.447201	6.216341	-1.135434
H	4.290396	6.733835	-1.594211
H	2.538587	6.774885	-1.389463
H	3.575610	6.254974	-0.043479

Rotational constants (GHZ): 0.05278750 .05065960 .0361310

Compound 3
--
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z

F	-0.856723	0.008098	2.770954
F	0.530837	-3.640951	0.044678
F	-1.672022	-0.442041	-2.779665
F	-2.370457	-3.544887	0.762625
F	0.278943	-1.152050	4.874229
F	-4.558544	-4.098896	-3.347116
F	-4.042299	-4.916786	-0.789649
O	0.387578	-0.926082	-1.025318
N	-0.481726	1.449137	-0.023967
N	-1.339457	0.396763	0.137307
C	-0.237879	-1.182234	2.553311
C	0.451740	-2.987352	1.219452
C	-0.218157	-1.760075	1.285665
C	0.339429	-1.765165	3.681597
C	-2.527639	2.304056	0.188209
C	-2.581534	0.898147	0.286442
C	-3.774759	0.057378	0.529335

C	-1.882431	-1.952599	-0.947506
C	-4.858755	0.106987	-0.360209
H	-4.801786	0.740390	-1.239429
C	1.315395	-0.022903	-0.675628
C	-2.199391	-1.567815	-2.255106
C	0.919837	1.200834	-0.103009
C	-3.701784	-3.412930	-2.580852
C	-3.082569	-2.267812	-3.071743
C	-3.663662	3.248857	0.274277
C	-0.572852	3.944838	-0.273428
C	-3.856758	-0.751925	1.672016
H	-3.034321	-0.763356	2.376642
C	-2.543605	-3.096270	-0.496870
C	-3.435579	-3.826192	-1.280822
C	-4.998105	-1.518052	1.905973
H	-5.050280	-2.146168	2.789834
C	-5.994957	-0.663217	-0.122766
H	-6.824337	-0.628054	-0.822553
C	2.671850	-0.295060	-0.850368
H	2.947065	-1.248844	-1.283243
C	-4.554929	3.195619	1.358015
H	-4.404368	2.456182	2.137891
C	-6.065672	-1.479583	1.008565
H	-6.951236	-2.081151	1.190114
C	3.645198	0.629995	-0.444936
C	-0.739029	4.977992	0.660562
H	-1.290770	4.788162	1.575407
C	-3.873562	4.213203	-0.724426
H	-3.198712	4.259839	-1.573045
C	0.131207	4.197915	-1.461582
H	0.254890	3.404207	-2.191452
C	0.506855	6.483057	-0.764433
H	0.927019	7.466155	-0.954229
C	-4.943226	5.103053	-0.638255
H	-5.091910	5.840972	-1.421063
C	-5.625814	4.084263	1.439973
H	-6.304763	4.029639	2.285786
C	0.667290	5.461023	-1.702789
H	1.208920	5.647657	-2.625042
C	-0.197304	6.239413	0.415630
H	-0.327088	7.031113	1.147103
C	-5.822946	5.041576	0.443550
H	-6.657293	5.733607	0.508771
B	-0.764976	-1.105709	-0.118511
C	0.992308	-2.984887	3.559887
C	1.044473	-3.606351	2.314588
F	1.558877	-3.559980	4.627691
C	-1.180800	2.619993	-0.027491
F	1.667028	-4.786488	2.184866
F	-3.350106	-1.844098	-4.316833
C	1.885008	2.100697	0.357118
H	1.587540	3.022804	0.839176
C	3.233587	1.827958	0.176052
H	3.973678	2.541426	0.516365

N	5.016398	0.355341	-0.632541
C	5.979433	0.785470	0.326223
C	7.181767	1.371745	-0.097025
C	5.747029	0.616150	1.699771
C	8.132519	1.775217	0.838385
H	7.363852	1.504372	-1.158269
C	6.695744	1.039664	2.628524
H	4.824582	0.151643	2.031733
C	7.894337	1.617222	2.205075
H	9.059044	2.226576	0.495416
H	6.501835	0.901236	3.688218
H	8.634655	1.938176	2.931304
C	5.455289	-0.394086	-1.764024
C	4.978610	-0.089037	-3.047796
C	6.378977	-1.437616	-1.606145
C	5.410925	-0.825283	-4.148852
H	4.269021	0.721799	-3.174103
C	6.819699	-2.156606	-2.715674
H	6.745703	-1.679094	-0.614160
C	6.336272	-1.858978	-3.990996
H	5.031092	-0.579986	-5.136357
H	7.533912	-2.963212	-2.578218
H	6.675529	-2.426623	-4.851877

Compound 4

Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z

F	0.132721	1.316341	2.125919
O	-1.059398	1.403873	-1.831033
F	-3.681603	1.825748	-0.682227
F	-3.437800	-0.749366	0.867073
F	-0.600473	-1.071755	-2.942647
F	-4.737090	3.535071	1.091080
F	-0.939329	3.014749	3.862136
N	0.935406	-0.873258	0.368567
N	0.422390	0.189338	-0.322762
F	-4.210682	-4.021302	-2.401666
F	-4.865674	-2.803507	-0.041960
F	-3.383060	4.157620	3.384445
F	-2.060622	-3.124768	-3.835151
C	0.130548	-1.948883	0.885435
C	2.296271	-0.785710	0.393130
C	-0.119348	2.342538	-2.005763
C	-1.978418	-0.757341	-1.022577
C	1.452092	0.967702	-0.715647
C	2.666583	0.368382	-0.297907
C	1.171007	2.201618	-1.442722
C	3.154144	-1.794301	1.049870
C	4.058769	0.821970	-0.534265
S72			

C	-1.077207	1.847773	1.794905
C	-3.071147	-1.270419	-0.322025
C	-1.717032	1.493316	0.609588
C	-2.962492	2.103966	0.421927
C	2.973975	-2.133655	2.399861
H	2.186190	-1.658653	2.974387
C	-0.416958	3.463363	-2.793351
H	-1.408655	3.534398	-3.226720
C	-1.674807	-1.431953	-2.210776
C	-3.828749	-2.353882	-0.764617
C	2.115341	3.227068	-1.628654
H	3.092350	3.143860	-1.169425
C	4.191241	-2.400709	0.324461
H	4.341992	-2.135912	-0.716661
C	5.023108	-3.337074	0.935476
H	5.819074	-3.802759	0.362518
C	0.139229	-3.175899	0.218638
H	0.718659	-3.289311	-0.691084
C	-3.498500	-2.976320	-1.962490
C	0.538595	4.453982	-2.981718
H	0.294078	5.324912	-3.583140
C	4.576185	0.885415	-1.838320
H	3.939950	0.620808	-2.677541
C	-1.612214	2.726418	2.736819
C	1.803171	4.347354	-2.388036
H	2.538815	5.134076	-2.519225
C	-3.536469	2.988359	1.328756
C	4.833904	-3.674321	2.276559
H	5.483537	-4.403222	2.751698
C	-0.603437	-1.767091	2.057803
H	-0.573949	-0.810706	2.563295
C	-2.405794	-2.515240	-2.690336
C	3.809975	-3.068758	3.006864
H	3.663007	-3.320802	4.052637
C	5.891982	1.289746	-2.059115
H	6.277584	1.334992	-3.073329
B	-1.117008	0.570601	-0.618226
C	-2.850332	3.308284	2.497905
C	4.890554	1.167563	0.541077
H	4.498870	1.123477	1.552578
C	6.711604	1.631816	-0.981552
H	7.736556	1.946064	-1.154639
C	-0.613306	-4.231382	0.728772
H	-0.617058	-5.186694	0.213751
C	6.207842	1.568903	0.318250
H	6.838597	1.835146	1.161186
C	-1.365406	-4.057286	1.893418
H	-1.956202	-4.880039	2.283883
C	-1.358493	-2.829064	2.555503
H	-1.941298	-2.693163	3.460703

Compound 5

Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z

F	-3.128594	0.998483	-0.581669
F	-5.182246	-0.318184	0.474069
F	-4.952922	-1.554625	2.893119
F	0.775022	1.132844	-2.192034
F	-0.479397	-0.166848	3.202876
F	0.392798	2.969246	-4.071569
F	-2.073374	3.581168	0.738106
F	-2.583767	-1.416892	4.267774
F	-2.439494	5.416366	-1.180418
O	0.158934	2.100738	1.796555
N	0.814208	0.234975	0.368020
N	0.752504	-0.999467	-0.223105
F	-1.212111	5.140191	-3.608721
C	2.112351	0.521478	0.601279
C	-0.486388	-1.660106	-0.521753
C	-3.920989	-0.851923	2.400442
C	-4.031965	-0.225392	1.166981
C	-0.615860	2.274506	-0.607705
C	-2.936307	0.451336	0.635727
C	2.461038	1.815062	1.182410
C	4.375503	-0.753885	0.295150
C	2.281492	-2.847687	-0.901640
C	2.010519	-1.510950	-0.333263
C	-1.636480	-0.119079	2.513599
C	2.906747	-0.577475	0.191113
C	-2.712411	-0.794229	3.085662
C	-0.022819	2.185816	-1.864759
C	-1.227588	-1.309991	-1.650024
H	-0.846425	-0.555296	-2.326909
C	-1.428446	3.400291	-0.430790
C	-2.463719	-1.897613	-1.883315
H	-3.028479	-1.573444	-2.746960
C	-1.695556	0.523770	1.271401
C	4.040162	3.551157	1.808109
H	5.049181	3.950041	1.793934
C	3.764212	2.343179	1.179854
H	4.557951	1.805062	0.677044
C	2.851050	-5.379608	-1.963907
H	3.070554	-6.360395	-2.375118
C	5.001126	-0.796680	1.551928
H	4.401800	-0.676794	2.449477
C	3.051313	-3.767648	-0.173080
H	3.427217	-3.493463	0.806808
C	-0.962436	-2.652644	0.337354
H	-0.380358	-2.935315	1.208436
C	-0.208763	3.123004	-2.881083
N	-4.261964	-3.396011	-1.182967
C	5.161525	-0.909867	-0.856354

H	4.687685	-0.876444	-1.832482
C	-2.193946	-3.245974	0.107597
H	-2.544565	-3.989842	0.810584
C	2.091472	-4.467006	-2.697936
H	1.721505	-4.732985	-3.683432
C	1.807297	-3.208065	-2.172615
H	1.224149	-2.499321	-2.750061
C	6.539424	-1.102182	-0.754215
H	7.134052	-1.219238	-1.655362
C	6.378649	-0.986048	1.651900
H	6.847702	-1.016024	2.630961
C	-1.020842	4.225507	-2.649995
C	-1.643093	4.362579	-1.411615
C	1.421509	2.550932	1.798085
C	3.330867	-5.026336	-0.701835
H	3.923524	-5.730896	-0.126319
C	7.151700	-1.140017	0.499183
H	8.224650	-1.287954	0.578019
C	-2.999910	-2.859887	-0.993340
C	3.012571	4.247161	2.457685
H	3.226387	5.187985	2.956907
B	-0.371536	1.287785	0.691186
C	1.713245	3.755127	2.453544
H	0.897732	4.287110	2.931399
C	-5.160092	-2.743260	-2.129667
H	-4.741276	-2.759298	-3.140302
H	-5.371332	-1.700990	-1.851037
H	-6.101547	-3.293156	-2.160049
C	-4.891013	-4.117943	-0.082075
H	-5.865018	-4.482146	-0.411138
H	-5.038436	-3.488807	0.808644
H	-4.297802	-4.991894	0.202943
--150			

Compound 6

Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z

F	-1.625331	2.290369	0.253543
F	-3.726947	1.795319	1.805713
F	-3.459448	0.344631	4.101228
F	1.905503	1.118971	-2.168942
F	1.126340	-0.188441	3.251717
F	1.913505	3.122295	-3.910530
F	0.428159	4.116282	1.226432
F	-0.995105	-0.628783	4.809013
F	0.445333	6.116162	-0.556248
O	2.237252	1.895820	1.837895
N	1.886432	0.022985	0.306835
N	1.251932	-1.041460	-0.276077
F	1.188335	5.650647	-3.147348
			S75

C	3.206512	-0.250492	0.353408
C	-0.171986	-1.098373	-0.453404
C	-2.385939	0.599835	3.342555
C	-2.511895	1.345865	2.178355
C	1.167842	2.515067	-0.364305
C	-1.393208	1.588565	1.384256
C	4.121849	0.756339	0.882622
C	4.696316	-2.303276	-0.278993
C	1.800367	-3.302308	-1.179323
C	2.167605	-2.006681	-0.570499
C	-0.041582	0.368221	2.872285
C	3.425103	-1.547116	-0.173436
C	-1.134170	0.107317	3.695955
C	1.540619	2.341202	-1.695414
C	-0.781932	-0.413912	-1.507006
H	-0.170976	0.133577	-2.213845
C	0.811645	3.827280	-0.032327
C	-2.162481	-0.431845	-1.643970
H	-2.619859	0.108797	-2.462696
C	-0.116300	1.117667	1.691980
C	6.335505	1.680330	1.264925
H	7.407517	1.644325	1.101008
C	5.513782	0.721112	0.686523
H	5.947102	-0.058711	0.072872
C	1.170223	-5.783386	-2.324628
H	0.925352	-6.743838	-2.768271
C	5.408342	-2.663909	0.876671
H	5.029508	-2.365563	1.849579
C	2.214322	-4.494858	-0.565706
H	2.783507	-4.451750	0.356682
C	-0.951055	-1.849186	0.428321
H	-0.475211	-2.398411	1.233922
C	1.549423	3.366287	-2.641643
N	-4.366153	-1.070891	-0.795965
C	5.197371	-2.692733	-1.530101
H	4.655891	-2.417116	-2.429731
C	-2.332785	-1.859310	0.304807
H	-2.923766	-2.421117	1.016468
C	0.761361	-4.601525	-2.944723
H	0.201096	-4.638629	-3.874030
C	1.073202	-3.367199	-2.378094
H	0.759274	-2.452591	-2.868499
C	6.381985	-3.423456	-1.623581
H	6.757728	-3.715516	-2.599750
C	6.593650	-3.391645	0.781164
H	7.133054	-3.661761	1.684217
C	1.184743	4.650084	-2.258096
C	0.806541	4.882415	-0.937991
C	3.560351	1.806945	1.645194
C	1.897566	-5.726814	-1.134828
H	2.219763	-6.642041	-0.647634
C	7.083475	-3.774173	-0.469329
H	8.006456	-4.341579	-0.543255
C	-2.974508	-1.114848	-0.711987

C	5.773427	2.689278	2.057563
H	6.413184	3.436653	2.518251
B	1.259613	1.405676	0.851280
C	4.398651	2.755969	2.246797
H	3.940176	3.539112	2.840888
C	-5.059999	-0.064740	-1.549067
C	-4.758729	1.296769	-1.401107
C	-6.090067	-0.454160	-2.414260
C	-5.472200	2.248049	-2.129500
H	-3.977104	1.608011	-0.718162
C	-6.809290	0.505290	-3.125423
H	-6.325421	-1.508135	-2.519741
C	-6.499529	1.859400	-2.991273
H	-5.231160	3.299984	-2.008381
H	-7.607480	0.191169	-3.791567
H	-7.056042	2.605738	-3.549882
C	-5.167356	-1.856933	0.106000
C	-5.422455	-3.203972	-0.170105
C	-5.690240	-1.267189	1.262737
C	-6.208699	-3.956211	0.703761
H	-5.001500	-3.650796	-1.065579
C	-6.479222	-2.022924	2.129675
H	-5.457569	-0.229604	1.481302
C	-6.741612	-3.366142	1.851311
H	-6.408040	-5.001086	0.485008
H	-6.881623	-1.563480	3.027413
H	-7.355730	-3.951928	2.528630

References

1. (a) Kumar, S. V.; Yadav, S. K.; Raghava, B.; Saraiah, B.; Ila, H.; Rangappa, K. S.; Hazra, A. Cyclocondensation of Arylhydrazines with 1,3-Bis(het)arylmonothio-1,3-diketones and 1,3-Bis(het)aryl-3-(methylthio)-2-propenones: Synthesis of 1-Aryl-3,5-bis(het)arylpyrazoles with Complementary Regioselectivity. J. Org. Chem. 2013, 78, 4960-4973; (b) Yugandar, S.; Konda, S.; Ila, H. Synthesis of Substituted Benzo[b]thiophenes via Sequential One-Pot, Copper-Catalyzed Intermolecular C-S Bond Formation and Palladium-Catalyzed Intramolecular Arene-Alkene Coupling of Bis(het)aryl/alkyl-1,3-monothiodiketones and o-Bromoiodoarenes. Org. Lett. 2017, 19, 1512-1515.
2. Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

[^0]:

