Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

for paper

Synthesis, structural features, magnetic properties and thermal decomposition of a new series of polymeric Ln(III)-Cr(III) cyclopropane-1,1dicarboxylates

Evgeniya S. Bazhina^{*a*,*}, Maxim A. Shmelev^{*a*}, Julia K. Voronina^{*a*}, Natalia A. Korotkova^{*a*}, Konstantin A. Babeshkin^{*a*}, Anna K. Matiukhina^{*a*}, Ekaterina V. Belova^{*b*}, Natalia V. Gogoleva^{*a*}, Sergey Yu. Kottsov^{*a*}, Nikolay N. Efimov^{*a*}, Mikhail A. Kiskin^{*a*}, and Igor L. Eremenko^{*a*}

^a N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 31, Moscow 119991, Russian Federation E-mail: <u>evgenia-VO@mail.ru</u>

^b M.V. Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991 Moscow, Russian Federation

I. X-ray powder diffraction patterns

Fig. S1. The experimental PXRD pattern for 1_{Eu} measured at 295 K and its comparison with calculated data for 1_{Eu} .

Fig. S2. The experimental PXRD pattern for 1_{Gd} measured at 295 K and its comparison with calculated data for 1_{Gd} .

Fig. S3. The experimental PXRD pattern for 1_{Tb} measured at 295 K and its comparison with calculated data for 1_{Tb} .

Fig. S4. The experimental PXRD pattern for 2_{Dy} measured at 295 K and its comparison with data calculated from single-crystal XRD for 1_{Tb} and 2_{Ho} .

Fig. S5. The experimental powder XRD pattern for 2_{H_0} measured at 295 K and its comparison with data calculated from single-crystal XRD for 1_{Tb} and 2_{H_0} .

Fig. S6. The experimental powder XRD pattern for 2_{Er} measured at 295 K and its comparison with data calculated from single-crystal XRD for 1_{Tb} and 2_{Ho} .

Fig. S7. The experimental powder XRD pattern for 2_{Yb} measured at 295 K and its comparison with data calculated from single-crystal XRD for 1_{Tb} and 2_{Ho} .

Fig. S8. The experimental powder XRD pattern for $2_{\rm Y}$ measured at 295 K and its comparison with data calculated from single-crystal XRD for $1_{\rm Tb}$ and $2_{\rm Ho}$.

II. The description of crystal structures

Fig. S9. The fragment of crystal packing of compound 3.

1_{Eu} , 1_{Gd} , 1_{Tb} . The lowest SHAPE values are shown highlighted indicating best fits.							
Structure,	SAPR-8	TDD-8	JBTPR-8	BTPR-8	JSD-8		
Ln							
1 _{Eu} , Eu1	2.378	1.149	1.627	0.952	3.224		
1_{Eu} , Eu2	0.773	1.040	1.890	1.325	3.488		
1 _{Gd} , Gd1	2.290	1.099	1.655	0.948	3.261		
1 _{Gd} , Gd2	0.761	1.076	1.860	1.313	3.499		
1 _{Tb} , Tb1	2.238	1.126	1.674	0.955	3.359		
1 _{Tb} , Tb2	0.670	1.151	1.877	1.336	3.558		

Table S1. Continuous shape measures (CShM) for LnO₈ coordination polyhedra in compounds

Codes:

SAPR-8 (D4d) Square antiprism;

TDD-8 (D2d) Triangular dodecahedron;

JBTPR-8 (C2v) Biaugmented trigonal prism J50;

BTPR-8 (C2v) Biaugmented trigonal prism;

JSD-8 (D2d) Snub diphenoid J84.

Angle	ω	Angle	ω
O7A–Eu1–O11A ⁽ⁱ⁾	87.63(12)	O3A–Eu2–O8A ⁽ⁱ⁾	73.01(12)
O7A–Eu1–O1	73.73(12)	O3A–Eu2–O3B	74.76(12)
O7A–Eu1–O2	80.84(12)	O3A–Eu2–O12B ⁽ⁱⁱⁱ⁾	111.71(12)
O7A–Eu1–O3	143.51(11)	O3A–Eu2–O6	74.81(12)
O7A–Eu1–O4	87.53(12)	O3A–Eu2–O7	142.23(12)
O7A–Eu1–O5	74.01(11)	O3A–Eu2–O8	143.30(13)
O11Ai–Eu1–O5	69.74(13)	O3A–Eu2–O9	85.70(13)
O11B ⁽ⁱⁱ⁾ –Eu1–O7A	146.20(12)	O8A ⁽ⁱ⁾ –Eu2–O6	135.69(12)
O11B ⁽ⁱⁱ⁾ –Eu1–O11A ⁽ⁱ⁾	112.49(12)	O8A ⁽ⁱ⁾ –Eu2–O8	74.45(12)
O11B ⁽ⁱⁱ⁾ –Eu1–O1	73.96(12)	O8A ⁽ⁱ⁾ –Eu2–O9	79.39(12)
O11B ⁽ⁱⁱ⁾ –Eu1–O2	80.99(12)	O3B–Eu2–O8Ai	123.50(12)
O11B ⁽ⁱⁱ⁾ –Eu1–O3	69.84(12)	O3B–Eu2–O12B ⁽ⁱⁱⁱ⁾	72.53(12)
O11B ⁽ⁱⁱ⁾ –Eu1–O4	91.54(13)	O3B-Eu2-O6	74.71(13)
O11B ⁽ⁱⁱ⁾ –Eu1–O5	137.42(12)	O3B-Eu2-O8	139.23(12)
O1–Eu1–O11A ⁽ⁱ⁾	141.85(12)	O3B-Eu2-O9	141.79(12)
O1–Eu1–O5	132.09(12)	O12B ⁽ⁱⁱⁱ⁾ –Eu2–O8Ai	78.09(12)
O2–Eu1–O11A ⁽ⁱ⁾	70.38(11)	O12B ⁽ⁱⁱⁱ⁾ –Eu2–O6	143.09(13)
O2–Eu1–O1	73.91(12)	O12B ⁽ⁱⁱⁱ⁾ –Eu2–O8	77.20(12)
O2–Eu1–O3	122.32(12)	O12B ⁽ⁱⁱⁱ⁾ –Eu2–O9	145.67(12)
O2–Eu1–O5	133.18(12)	O7–Eu2–O8Ai	144.74(13)
O3–Eu1–O11A ⁽ⁱ⁾	76.49(11)	O7–Eu2–O3B	78.06(12)
O3–Eu1–O1	136.18(12)	O7–Eu2–O12B ⁽ⁱⁱⁱ⁾	83.91(13)
O3–Eu1–O5	69.70(11)	O7–Eu2–O6	73.06(13)
O4–Eu1–O11A ⁽ⁱ⁾	141.86(13)	O7–Eu2–O8	72.10(12)
O4–Eu1–O1	71.59(13)	O7–Eu2–O9	100.38(13)
O4–Eu1–O2	145.44(12)	08–Eu2–O6	120.27(12)
O4–Eu1–O3	85.39(13)	08–Eu2–O9	72.00(12)
O4–Eu1–O5	72.55(13)	O9–Eu2–O6	68.54(12)

Table S2. Selected bond angles ω (deg.) for $\mathbf{1}_{Eu}$.

Symmetry codes: (i) x-1/2, -y+1/2, -z+1/4; (ii) -y+1, -x+1, -z+1/2; (iii) x-1/2, -y+3/2, -z+1/4.

Angle	ω	Angle	ω
O1–Gd1–O5	131.53(19)	O3AGd2O3B	111.68(18)
O1–Gd1–O11A ⁽ⁱ⁾	142.03(17)	O3AGd2O6	142.00(18)
O2–Gd1–O1	74.38(17)	O3A-Gd2-O7	143.20(19)
O2–Gd1–O3	146.34(19)	O3A–Gd2–O8A ⁽ⁱⁱⁱ⁾	73.01(18)
O2–Gd1–O4	122.46(18)	O3AGd2O8	85.28(19)
O2–Gd1–O5	133.49(18)	O3A-Gd2-O9	74.93(17)
O2–Gd1–O11A ⁽ⁱ⁾	70.14(17)	O3A–Gd2–O12B ^(iv)	74.57(17)
O3–Gd1–O1	72.00(19)	O3BGd2O7	77.57(18)
O3–Gd1–O4	84.37(19)	O3B–Gd2–O8A ⁽ⁱⁱⁱ⁾	78.04(18)
O3–Gd1–O5	71.7(2)	O3BGd2O8	146.13(18)

Table S3. Selected bond angles ω (deg.) for 1_{Gd} .

O3–Gd1–O11A ⁽ⁱ⁾	141.42(19)	O3B-Gd2-O9	142.38(18)
O4Gd1O1	136.06(17)	O6–Gd2–O3B	84.3(2)
O4Gd1O5	69.48(17)	O6–Gd2–O7	72.25(18)
O4–Gd1–O11A ⁽ⁱ⁾	76.68(16)	O6–Gd2–O8A ⁽ⁱⁱⁱ⁾	144.98(19)
O4BGd1O1	74.04(17)	O6–Gd2–O8	100.29(19)
O4BGd1O2	80.98(18)	O6–Gd2–O9	72.36(19)
O4B-Gd1-O3	91.45(18)	O7–Gd2–O8	72.16(18)
O4B-Gd1-O4	70.01(17)	O7–Gd2–O9	120.30(17)
O4BGd1O5	137.29(18)	O8A ⁽ⁱⁱⁱ⁾ –Gd2–O7	74.53(18)
O4B-Gd1-O11A ⁽ⁱ⁾	112.44(17)	O8A(iii)_Gd2_O8	79.56(18)
O7A ⁽ⁱⁱ⁾ –Gd1–O1	73.49(18)	O8A ⁽ⁱⁱⁱ⁾ -Gd2-O9	136.30(18)
O7A ⁽ⁱⁱ⁾ –Gd1–O2	80.69(17)	O8–Gd2–O9	68.89(18)
O7A ⁽ⁱⁱ⁾ –Gd1–O3	88.17(18)	O12B ^(iv) –Gd2–O3B	72.37(18)
O7A ⁽ⁱⁱ⁾ –Gd1–O4	143.59(17)	O12B ^(iv) –Gd2–O6	78.39(18)
O7A ⁽ⁱⁱ⁾ –Gd1–O4B	145.94(18)	O12B ^(iv) –Gd2–O7	139.59(18)
O7A ⁽ⁱⁱ⁾ –Gd1–O5	74.33(17)	O12B ^(iv) –Gd2–O8A ⁽ⁱⁱⁱ⁾	123.13(18)
O7A ⁽ⁱⁱ⁾ –Gd1–O11A ⁽ⁱ⁾	87.6(17)	O12B ^(iv) –Gd2–O8	141.49(18)
011A ⁽ⁱ⁾ -Gd1-O5	70.26(19)	O12B ^(iv) –Gd2–O9	74.27(18)

Symmetry code(s): (i) -y+1, -x+1, -z+1/2; (ii) -y+3/2, x+1/2, z-1/4; (iii) -x+1/2, y+1/2, -z+3/4; (iv) -x+3/2, y-1/2, -z+3/4.

Angle	ω	Angle	ω
O7A–Tb1–O11A ⁽ⁱ⁾	87.25(16)	O3A–Tb2–O8A ⁽ⁱ⁾	73.27(15)
O7A-Tb1-O1	73.37(16)	O3A–Tb2–O3B	74.77(15)
O7A–Tb1–O2	80.88(15)	O3A–Tb2–O12B ⁽ⁱⁱⁱ⁾	112.22(15)
O7A–Tb1–O3	143.72(15)	O3A-Tb2-O6	74.77(15)
O7A–Tb1–O4	88.41(16)	O3A-Tb2-O7	142.30(16)
O7A–Tb1–O5	74.12(15)	O3A-Tb2-O8	142.93(16)
O11A ⁽ⁱ⁾ -Tb1-O4	140.53(17)	O3A-Tb2-O9	84.49(16)
O11A ⁽ⁱ⁾ -Tb1-O5	69.78(17)	O8Ai–Tb2–O6	136.37(15)
O11B ⁽ⁱⁱ⁾ –Tb1–O7A	145.95(15)	08Ai-Tb2-O8	74.35(16)
O11B ⁽ⁱⁱ⁾ -Tb1-O11A ⁽ⁱ⁾	112.99(16)	O8Ai-Tb2-O9	79.37(15)
O11B ⁽ⁱⁱ⁾ –Tb1–O1	74.13(16)	O3B–Tb2–O8A ⁽ⁱ⁾	123.14(15)
O11B ⁽ⁱⁱ⁾ -Tb1-O2	80.77(15)	O3B–Tb2–O12B ⁽ⁱⁱⁱ⁾	72.76(15)
O11B ⁽ⁱⁱ⁾ -Tb1-O3	69.95(15)	O3B-Tb2-O6	74.55(16)
O11B ⁽ⁱⁱ⁾ -Tb1-O4	91.53(16)	O3B-Tb2-O8	139.83(15)
O11B ⁽ⁱⁱ⁾ -Tb1-O5	137.48(16)	O3B-Tb2-O9	141.39(16)
O1–Tb1–O11A ⁽ⁱ⁾	141.89(15)	O12B ⁽ⁱⁱⁱ⁾ -Tb2-O8A ⁽ⁱ⁾	77.64(15)
O1–Tb1–O4	72.77(16)	O12B ⁽ⁱⁱⁱ⁾ -Tb2-O6	142.94(16)
O1–Tb1–O5	131.49(17)	O12B ⁽ⁱⁱⁱ⁾ -Tb2-O8	77.46(15)
O2–Tb1–O11A ⁽ⁱ⁾	70.53(15)	O12B ⁽ⁱⁱⁱ⁾ -Tb2-O9	145.85(15)
O2–Tb1–O1	74.13(15)	O7–Tb2–O8A ⁽ⁱ⁾	144.40(16)
O2–Tb1–O3	121.78(16)	O7–Tb2–O3B	78.17(15)
O2–Tb1–O4	146.87(16)	O7–Tb2–O12B ⁽ⁱⁱⁱ⁾	83.56(17)

133.56(16)	O7–Tb2–O6	73.04(16)
76.36(15)	O7–Tb2–O8	72.20(16)
136.56(15)	O7–Tb2–O9	101.40(17)
84.47(16)	O8–Tb2–O6	119.92(16)
69.88(16)	O8–Tb2–O9	72.21(15)
71.30(18)	O9–Tb2–O6	68.68(16)
	133.56(16) 76.36(15) 136.56(15) 84.47(16) 69.88(16) 71.30(18)	133.56(16)O7-Tb2-O676.36(15)O7-Tb2-O8136.56(15)O7-Tb2-O984.47(16)O8-Tb2-O669.88(16)O8-Tb2-O971.30(18)O9-Tb2-O6

Symmetry code(s): (i) x+1/2, -y-1/2, -z-1/4; (ii) -y-1, -x-1, -z-1/2; (iii) x+1/2, -y-3/2, -z-1/4.

Table S5. Hydrogen bond parameters in structure $\mathbf{1}_{Eu}.$

Errormont D. HA	Distance/ Å	D II A /9		
riagment D-H···A	D-H	Н…А	D····A	
O1–H1A…O12A ⁽ⁱ⁾	0.98	1.76	2.729(5)	167
O1–H1B…O2S ⁽ⁱ⁾	0.88	1.79	2.651(5)	168
O2–H2A····O2S ⁽ⁱ⁾	0.98	1.86	2.721(5)	145
O2–H2B…O4B ⁽ⁱⁱ⁾	0.85	1.91	2.741(5)	166
O3–H3A…O5	0.98	2.38	2.787(5)	104
O3–H3A…O9	0.98	2.17	3.151(5)	179
O3–H3B…O6S ⁽ⁱ⁾	0.98	1.68	2.660(5)	180
O4–H4A…O1S	0.98	1.79	2.771(5)	179
O4–H4B…O4S ⁽ⁱ⁾	0.80	1.93	2.719(5)	167
O5–H5A…O5A	0.84	1.94	2.749(4)	162
05–H5A…07A	0.84	2.57	2.918(5)	106
O5–H5B…O9	0.86	1.97	2.822(5)	175
06–H6A…O4S	0.84	1.94	2.749(5)	163
06–H6A…07	0.84	2.54	2.887(5)	106
06–H6B…01A	0.86	2.09	2.866(4)	151
07–H7A…01B	0.98	1.81	2.788(4)	180
07–H7A…O3B	0.98	2.39	2.989(5)	119
07–H7B…O3S	0.98	1.65	2.630(6)	179
08–H8A…05S	0.84	1.87	2.703(6)	176
08–H8A…09	0.84	2.55	2.870(5)	104
O8–H8B…O10B ⁽ⁱⁱⁱ⁾	0.84	1.98	2.751(4)	154
09–H9A…05S	0.98	2.54	2.872(6)	100
09–H9A…O6A ⁽ⁱⁱ⁾	0.98	2.00	2.983(4)	180
09–H9A…O8A ⁽ⁱⁱ⁾	0.98	2.46	3.095(5)	122
O9–H9B…O8S ⁽ⁱ⁾	0.98	1.96	2.919(12)	164
O9–H9B…O8' ⁽ⁱ⁾	0.98	1.77	2.683(16)	154
O1S–H1SA…O12A	0.89	1.93	2.808(4)	166
O1S–H1SB…O12A	1.15	1.75	2.808(4)	150
O2S–H2SA····O8B ^(iv)	0.98	1.85	2.742(5)	150
O2S–H2SB····O4A ^(v)	0.98	1.95	2.836(5)	149
O3S–H3SA····O2B ⁽ⁱⁱⁱ⁾	0.95	2.02	2.960(6)	170
O3S–H3SA····O4B ⁽ⁱⁱⁱ⁾	0.95	2.50	2.996(6)	113
O3S-H3SB····O7S	0.98	2.49	2.942(8)	108

O3S-H3SB····O10S	0.98	2.47	2.905(8)	106'
O3S–H3SB···O7'	0.98	2.56	3.076(10)	113
O3S–H3SB····O9S ^(vi)	0.98	2.30	3.243(10)	161
O3S–H3SB····O9'(vi)	0.98	2.26	3.236(16)	175
O3S–H3SB····O9'(iii)	0.98	2.46	2.910(17)	108
O4S–H4SA…O8S	0.80	1.92	2.706(12)	165
O4S–H4SA…O8'	0.80	2.08	2.820(15)	153
O4S–H4SB…O1B	0.80	2.47	3.123(5)	139
O4S–H4SB…O9B	0.80	2.17	2.859(4)	144
O5S–H5SA····O2A ⁽ⁱⁱ⁾	0.98	1.97	2.798(6)	140
O5S–H5SB····O7S ⁽ⁱ⁾	0.95	1.88	2.685(8)	140
O5S–H5SB····O7' ⁽ⁱ⁾	0.95	1.78	2.694(9)	161
O6S–H6SA…O5B	0.98	1.82	2.797(5)	172
O6S–H6SB…O4A ^(vii)	0.98	1.97	2.852(6)	148
O7S–H7SA…O7B	1.09	1.76	2.828(8)	163
O7S–H7SB…O6S	0.95	2.22	3.168(8)	178
O8S–H8SA…O7S	0.87	1.94	2.715(15)	148
O8S–H8SA…O10S	0.87	1.96	2.391(16)	109
O8S–H8SA…O7'	0.87	2.58	3.360(17)	149
O8S–H8SB…O8S ⁽ⁱ⁾	0.87	2.21	3.042(17)	160
O9S–H9SA…O8B	0.98	1.82	2.774(10)	164
O9S–H9SB····O3S ^(viii)	0.95	2.29	3.243(10)	178
O9S–H9SB····O7'(viii)	0.95	2.58	2.951(16)	104
O9S–H9SB····O9'(ix)	0.95	2.47	2.854(17)	104
C9B–H9BB····O2B ⁽ⁱⁱⁱ⁾	0.99	2.55	3.412(6)	146

Symmetry codes: (i) 1–y, 1–x, 1/2–z; (ii) –1/2+x, 1/2–y, 1/4–z; (iii) –1/2+x, 3/2–y, 1/4–z; (iv) 1/2+x, 3/2– y, 1/4–z; (v) 1/2+x, 1/2–y, 1/4–z; (vi) –1/2+y, 3/2–x, 1/4+z; (vii) 1/2+y, 3/2–x, 1/4+z; (viii) 3/2–y, 1/2+x, –1/4+z; (ix) y, x, –z.

Table S6. Hydrogen bond parameters in structure 1_{Gd} .

Fragment D. HA	Distance/ Å	D U A /º			
Fragment D-H···A	D-H	Н…А	D····A	D-11 A/	
O1–H1A…O2	0.87	2.55	2.886(7)	104	
01–H1A····O5S ⁽ⁱ⁾	0.87	1.79	2.659(7)	180	
O1–H1B…O12A ⁽ⁱⁱ⁾	0.87	1.91	2.728(7)	156	
O2–H2A…O11B ⁽ⁱⁱⁱ⁾	0.98	1.80	2.738(8)	158	
O2–H2B····O5S ⁽ⁱ⁾	0.98	1.79	2.729(8)	158	
O3–H3A…O6S ⁽ⁱⁱ⁾	0.87	1.79	2.653(8)	173	
O3–H3B…O1	0.87	2.50	2.813(7)	102	
O3–H3B…O1S ^(iv)	0.87	2.13	2.766(8)	129	
O4–H4A…O4B	0.87	2.35	2.734(7)	107	
O4–H4A…O4S	0.87	1.90	2.665(8)	147	
O4–H4B…O9A ^(v)	0.87	1.92	2.710(6)	150	
O5–H5A····O5A ^(iv)	0.87	1.87	2.742(8)	179	
O5–H5A····O7A ^(iv)	0.87	2.38	2.909(8)	119	

O5–H5B····O8 ^(iv)	0.87	2.26	2.811(8)	122
O6–H6A…O2S	0.87	1.80	2.643(8)	162
06–H6A…07	0.87	2.45	2.825(7)	107
O6–H6B····O10B ⁽ⁱ⁾	0.87	2.17	2.789(7)	127
O7–H7A···O3S	0.96	1.82	2.701(9)	150
O7–H7B…O1B	0.79	2.00	2.754(8)	161
08–H8A…08S	0.87	1.95	2.805(10)	165
O8–H8B…O3S	0.87	2.16	2.863(8)	138
08–H8B…06A ^(vi)	0.87	2.30	2.983(7)	135
09–H9A…01A	0.98	2.03	2.861(7)	140
O9–H9B…O6S	0.98	1.81	2.753(8)	160
O1S–H1SA…O12A	0.88	2.14	2.814(7)	133
O1S–H1SB…O12A ^(vii)	0.88	2.14	2.814(7)	133
O2S–H2SA…O7S	0.82	2.16	2.962(10)	166
O2S–H2SA…O8S'	0.82	2.60	2.936(13)	106
O2S–H2SB····O8S'	0.87	2.56	2.936(13)	107
O2S–H2SB····O9S'	0.87	2.15	2.99(3)	163
O3S–H3SA····O2A ^(vi)	0.87	1.95	2.803(8)	166
O3S–H3SA····O6A ^(vi)	0.87	2.47	2.965(8)	117
O3S–H3SB····O5S	0.87	2.41	3.209(8)	152
O3S–H3SB····O7S ^(vii)	0.87	2.23	2.675(9)	112
O4S–H4SA…O2B	0.87	2.57	3.304(8)	143
O4S–H4SA…O6B	0.87	2.13	2.799(7)	134
O4S–H4SB····O4A ^(v)	0.87	2.15	2.839(8)	136
O5S–H5SA…O7B	0.87	1.97	2.743(9)	147
O5S–H5SB····O4A ^(vi)	0.87	2.06	2.847(8)	149
O6S–H6SA···O8S ^(vii)	0.87	2.00	2.727(11)	140
O6S–H6SB····O2B ⁽ⁱ⁾	0.87	2.04	2.879(8)	162
O7S–H7SA····O4S ⁽ⁱ⁾	0.99	2.33	3.164(10)	141
O7S–H7SA···O8B ⁽ⁱ⁾	0.99	2.11	2.765(10)	122
O7S–H7SB····O8B ⁽ⁱ⁾	0.99	2.28	2.765(10)	109
08S-H8SA…08S'	0.74	1.90	2.58(2)	151
O8S–H8SB····O7S ^(vii)	0.90	1.87	2.717(15)	158
O9S–H9SA····O11B ^(vii)	0.98	2.04	3.00(2)	163
O9S–H9SB····O7S ^(vii)	0.98	2.18	3.13(2)	162
C10B–H10D····O9B ⁽ⁱⁱ⁾	0.99	2.55	3.412(9)	146

Symmetry codes: (i) 3/2–x, –1/2+y, 3/4–z; (ii) 3/2–x, 1/2+y, 3/4–z; (iii) 3/2–y, –1/2+x, –1/4+z; (iv) 3/2– y, 1/2+x, –1/4+z; (v) 1–y, 1–x, 1/2–z; (vi) 1/2–x, 1/2+y, 3/4–z; (vii) y, x, 1–z.

Table S7. Hydrogen bond parameters in structure 1_{Tb} .

Frogmont D. H	Distance/ Å	D H A /º		
Plagment D-II ^{AA}	D-H	Н…А	D····A	$D = \Pi \cdots \Lambda$
01–H1A…012A ⁽ⁱ⁾	0.98	1.77	2.735(7)	167

O1–H1B····O2S ⁽ⁱ⁾	0.88	1.80	2.667(7)	167
O1S-H1S···O12A	0.81	2.12	2.821(6)	145
O2–H2A…O7' ⁽ⁱⁱ⁾	0.98	1.63	2.56(9)	155
O2–H2A…O2S ⁽ⁱ⁾	0.98	1.85	2.730(7)	147
O2–H2B…O4B ⁽ⁱⁱⁱ⁾	0.86	1.90	2.739(7)	165
O3–H3A…O5	0.98	2.36	2.768(7)	104
O3–H3A…O9	0.98	2.18	3.158(7)	179
O3–H3B…O6S ⁽ⁱ⁾	0.98	1.69	2.673(8)	178
O4–H4A…O1S	0.92	1.86	2.754(7)	164
O4–H4B…O4S ⁽ⁱ⁾	1.04	1.69	2.635(7)	148
O5–H5A…O5A	0.84	1.93	2.742(6)	162
O5–H5A…O7A	0.84	2.56	2.897(7)	105
O5–H5B…O9	0.86	1.97	2.824(7)	176
06–H6A…04S	0.84	1.93	2.743(7)	162
O6–H6A…O7	0.84	2.52	2.867(7)	106
06–H6B…01A	0.86	2.08	2.870(6)	151
07–H7A…01B	0.98	1.80	2.781(7)	179
07–H7A…O3B	0.98	2.38	2.968(6)	118
07–H7B…O3S	0.98	1.66	2.640(8)	177
08–H8A…05S	0.84	1.88	2.714(8)	176
08–H8A…09	0.84	2.53	2.858(7)	104
O8–H8B…O10B ^(iv)	0.83	1.98	2.750(6)	154
09–H9A…O6A ⁽ⁱⁱⁱ⁾	0.98	1.98	2.954(6)	180
09–H9A…08A ⁽ⁱⁱⁱ⁾	0.98	2.45	3.072(6)	121
O9–H9B…O8S ⁽ⁱ⁾	0.98	1.99	2.941(13)	164
O9–H9B…O8' ⁽ⁱ⁾	0.98	1.75	2.668(16)	155
O2S–H2SA···O8B ^(v)	0.98	1.85	2.751(7)	150
O2S–H2SB····O4A ^(vi)	0.98	1.99	2.867(7)	148
O3S–H3SA····O2B ^(iv)	0.95	2.01	2.949(8)	169
O3S–H3SA····O4B ^(iv)	0.95	2.51	3.007(8)	113
O3S–H3SB···O7S	0.98	2.45	2.933(10)	110
O3S–H3SB···O4S'	0.98	2.46	2.907(13)	108
O3S–H3SB····O9S ^(vii)	0.98	2.32	3.260(14)	160
O3S–H3SB····O9'(vii)	0.98	2.25	3.23(2)	174
O3S–H3SB····O9'(iv)	0.98	2.50	2.95(2)	108
O4S–H4SA…O8S	0.80	1.88	2.665(13)	166
O4S–H4SA…O8'	0.80	2.17	2.902(17)	152
O4S-H4SB···O1B	0.80	2.51	3.162(7)	140
O4S-H4SB···O9B	0.80	2.23	2.925(7)	145
O5S–H5SA···O2A ⁽ⁱⁱⁱ⁾	0.98	1.97	2.803(8)	141
O5S–H5SB····O7S ⁽ⁱ⁾	0.95	1.85	2.689(9)	146
O5S-H5SB…O7'(i)	0.95	2.28	3.16(8)	154
O6S-H6SA…O5B	0.98	1.83	2.807(7)	172
O6S–H6SB····O4A ^(viii)	0.98	1.97	2.854(8)	149

O7S–H7SA…O7B	0.98	1.84	2.773(9)	158
O7S–H7SB…O6S	0.98	2.22	3.199(10)	173
O8S–H8SA…O7S	0.87	2.11	2.892(17)	149
O8S–H8SA…O4S'	0.87	2.00	2.44(2)	110
O8S–H8SB…O8S ⁽ⁱ⁾	0.87	2.22	3.05(2)	159
O9S–H9SA…O8B	0.98	1.82	2.778(14)	165
O9S–H9SB····O3S ^(ix)	0.95	2.31	3.260(14)	178
O9S–H9SB…O9' ^(x)	0.95	2.46	2.86(2)	105
C9B–H9BA····O2B ^(iv)	0.99	2.54	3.414(8)	148

Symmetry codes: (i) -1-y, -1-x, -1/2-z; (ii) x, 1+y, z; (iii) 1/2+x, -1/2-y, -1/4-z; (iv) 1/2+x, -3/2-y, -1/4-z; (v) -1/2+x, -3/2-y, -1/4-z; (vi) -1/2+x, -1/2-y, -1/4-z; (vii) 1/2+y, -3/2-x, -1/4+z; (viii) -1/2+y, -3/2-x, -1/4+z; (ix) -3/2-y, -1/2+x, 1/4+z; (x) y, x, -z.

Table S8. Hydrogen bond parameters in structure 3.

Fragment D. H	Distance/ Å	D II A /9		
	D-H	Н…А	D····A	
O1S–H1S'····O10 ⁽ⁱ⁾	0.86	1.97	2.770(3)	154
O1S–H1S····O9 ⁽ⁱⁱ⁾	0.85	1.95	2.798(3)	175
O2S–H2S'····O6 ⁽ⁱⁱⁱ⁾	0.85	2.02	2.869(3)	174
O2S–H2S····O1 ^(iv)	0.89	1.83	2.706(2)	169
O5–H5…O7 ^(v)	0.89	1.88	2.774(3)	175
O5–H5'····O1S	0.87	1.74	2.604(3)	171
O6–H6…O4 ⁽ⁱⁱⁱ⁾	0.83	1.94	2.765(2)	170
O6–H6'····O9 ^(vi)	0.81	1.81	2.605(2)	169
O8–H8…O5 ⁽ⁱ⁾	0.95	2.39	3.341(3)	180

Symmetry codes: (i) 1–x, 1/2+y, 3/2–z; (ii) 2–x, 1/2+y, 3/2–z; (iii) 1–x, 1–y, 1–z; (iv) –1+x, y, z; (v) 2–x, –1/2+y, 3/2–z; (vi) 2–x, 1–y, 1–z.

III. Magnetic properties

Fig. S10. Frequency dependencies of in-phase, $\chi'(a)$ and out-of-phase, $\chi''(b)$ components of dynamic magnetic susceptibility for complex $\mathbf{1}_{Eu}$ at T = 2 K under various dc magnetic fields. Solid lines are visual guides.

Fig. S11. Frequency dependencies of in-phase, $\chi'(a)$ and out-of-phase, $\chi''(b)$ components of dynamic magnetic susceptibility for complex $\mathbf{1}_{Gd}$ at T = 2 K under various dc magnetic fields. Solid lines are visual guides.

Fig. S12. Frequency dependencies of in-phase, $\chi'(a)$ and out-of-phase, $\chi''(b)$ components of dynamic magnetic susceptibility for complex $\mathbf{1}_{Tb}$ at T = 2 K under various dc magnetic fields. Solid lines are visual guides.

Fig. S13. Frequency dependencies of in-phase, $\chi'(a)$ and out-of-phase, $\chi''(b)$ components of dynamic magnetic susceptibility for complex 2_{Dy} at T = 2 K under various dc magnetic fields. Solid lines are visual guides.

Fig. S14. Frequency dependencies of in-phase, $\chi'(a)$ and out-of-phase, $\chi''(b)$ components of dynamic magnetic susceptibility for complex $\mathbf{2}_{Ho}$ under magnetic field H = 5000 Oe under

various temperatures. Solid lines are visual guides.

Fig. S15. Frequency dependencies of in-phase, $\chi'(a)$ and out-of-phase, $\chi''(b)$ components of dynamic magnetic susceptibility for complex 2_{Er} at T = 2 K under various dc magnetic fields. Solid lines are visual guides.

Fig. S16. Frequency dependencies of in-phase, $\chi'(a)$ and out-of-phase, $\chi''(b)$ components of dynamic magnetic susceptibility for complex $\mathbf{2}_{Yb}$ at T = 2 K under various dc magnetic fields. Solid lines are visual guides.

Fig. S17. Frequency dependencies of in-phase, $\chi'(a)$ and out-of-phase, $\chi''(b)$ components of dynamic magnetic susceptibility for complex 2_Y at T = 2 K under various dc magnetic fields. Solid lines are visual guides.

Fig. S18. Experimental χT vs. T plots and fits (see Table S9 for details) for compounds 2_Y (at the bottom) and 1_{Gd} (at the top) at 2-300 K, $H_{dc} = 5000$ Oe.

Table S9. Best-fit approximation parameters of χT vs. T curves for $\mathbf{2}_{\mathrm{Y}}$ and $\mathbf{1}_{\mathrm{Gd}}$ (g-factors were fixed: $g_{\mathrm{Cr}} = 1.97$, $g_{\mathrm{Gd}} = 2.00$; $R^2 = \sum [(\chi_{\mathrm{M}}T)_{\mathrm{exp}} - (\chi_{\mathrm{M}}T)_{\mathrm{theor}}]^2 / (\sum (\chi_{\mathrm{M}}T)_{\mathrm{exp}}^2))$.

Fit number	1	2	3		4
Fit details	zJ=0	$zJ \neq 0$	<i>zJ</i> =	= 0	$zJ \neq 0$
2 _Y	$D_{\rm Cr} = 0$		$D_{\rm Cr} = -1.1 \ {\rm cm}^{-1}$	$D_{\rm Cr} = -$	-0.35 cm ⁻¹
	$R^2 = 1.7 \cdot 10^{-4}$	$zJ = -0.09 \text{ cm}^{-1}$,	$R^2 = 6.9 \cdot 10^{-5}$	$R^2 = 1.3 \cdot 10^{-4}$	$zJ = -0.06 \text{ cm}^{-1},$
		$R^2 = 8.9 \cdot 10^{-5}$			$R^2 = 4.4 \cdot 10^{-5}$
1 _{Gd}	$D_{\rm Cr} = 0$		$D_{\rm Cr} = -7.0 \ {\rm cm}^{-1}$	$D_{\rm Cr} = -$	-0.29 cm^{-1}
	$R^2 = 6.4 \cdot 10^{-4}$	$zJ = -0.03 \text{ cm}^{-1}$,	$R^2 = 6.9 \cdot 10^{-5}$	$R^2 = 6.3 \cdot 10^{-4}$	$zJ = -0.03 \text{ cm}^{-1},$
		$R^2 = 6.5 \cdot 10^{-5}$			$R^2 = 6.6 \cdot 10^{-5}$

Fig. S19. Frequency dependences of the in-phase $\chi'(a)$ and out-of-phase $\chi''(b)$ components of the *ac* magnetic susceptibility between 2 and 3.5 K for 1_{Eu} in 2500 Oe *dc*-field. Solid lines are visual guides (*a*), fits by the generalized Debye model (*b*).

Fig. S20. Frequency dependences of the in-phase $\chi'(a)$ and out-of-phase $\chi''(b)$ components of the *ac* magnetic susceptibility between 2 and 3.5 K for $2_{\rm Y}$ in 2500 Oe *dc*-field. Solid lines are visual guides (*a*), fits by the generalized Debye model (*b*).

IV. Quantum-chemical calculations

Fig. S21. The scheme of splitting of the three main orbital ⁴F and ²G levels as a result of distortion of the crystal field (relative arrangement of levels, the scale is not respected).

Fig. S22. Calculated energies of components of initial states for complexes 1_{Eu} and 2_{Y} . Blue and green levels are orbital quartets and doublets, respectively.

Fig. S23. Diffuse reflectance spectra of compounds 1_{Eu} and 1_{Y} .

T	1	Eu	2 _Y		
lerm	E, cm ⁻¹	λ, nm	E, cm ⁻¹	λ, nm	
⁴ A _{2g}	0	0	0	0	
² E _g	17189.0	501	17032.8	596	
	17214.3	381	17085.0	580	
	18024.2		17621.7		
$^{2}T_{1g}$	18289.5	549	18080.3	556	
	18363.1		18246.1		
	18904.3		17383.2		
$^{4}T_{1g}$	19212.3	520	19055.7	527	
	19594.4		20518.1		
	25229.1		25116.1		
$^{2}T_{2g}$	25366.2	391	25608.7	390	
	26076.6		26130.5		
	26991.2		25668.5		
$^{4}T_{2g}$	27711.4	361	29051.5	347	
	28425.5		31691.7		
$^{2}A_{1g}$	33446.3	299	33253.1	301	

Table S10. Calculated energies of the electronic states for Cr^{3+} ions in complexes 1_{Eu} and 2_{Y} .

ansonopy.					
Term	1	Eu	2 _Y		
	D	E	D	E	
	-0.727	0.135	-1.049	0.099	
${}^{4}\mathrm{T}_{1\mathrm{g}}$	0.676	0.188	0.434	-0.608	
	-0.055	-0.323	0.379	0.463	
	-0.706	-0.711	-0.637	-0.621	
$^{2}T_{1g}$	-0.689	0.687	-0.624	0.631	
C C	1.136	-0.002	1.176	-0.025	

Table S11. The contribution of levels to the axial and rhombic components of magnetic anisotropy.

Table S12. Calculated parameters of spin Hamiltonian (1).

Parameter	1 _{Eu}	2 _Y
<i>D</i> , см ⁻¹	-0.293	-0.348
E/D	0.098	0.124
gz	1.970	1.967
gx	1.972	1.972
$g_{ m y}$	1.971	1.974
$g_{ m iso}$	1.971	1.971

 Table S13. Energies of six lower Kramers doublets.

1 _{Eu}	2 _Y
0	0
0.6	0.7
17134.4	16894.4
17170.8	17042.1
17992.1	17360.7
18254.2	17478.8

V. Thermal analysis

a bFig. S24. TGA (blue), DTA (red) (a) and DSC (b) curves for the thermal decomposition of $1_{Eu.}$

a b **Fig. S25.** TGA (blue), DTA (red) (*a*) and DSC (*b*) curves for the thermal decomposition of

 $\mathbf{1}_{Gd.}$

a b **Fig. S26.** TGA (blue), DTA (red) (*a*) and DSC (*b*) curves for the thermal decomposition of

Fig. S27. TGA (blue), DTA (red) (a) and DSC (b) curves for the thermal decomposition of $2_{\text{Ho.}}$

Table S14. Characteristics of the solid-phase thermolysis of 1_{Eu} , 1_{Gd} , 1_{Tb} , 2_{Ho} .

Complex	t_{onset} (I),	t_{onset} (II),	t_{onset} (III),	Δm (I),	$\Delta m_{expected}$	Δm (II),	Δm (III),
	°C	°C	°C	%	(I), %	%	%
1 _{Eu}	28	246	534.7	18.9	19.8	30.9	4.8
1 _{Gd}	41	283	539.2	19.4	19.7	30.8	6.1
1 _{Tb}	25	251	529	19.1	19.6	29.1	4.9
2 _{Ho}	26	243.9	541.3	18.9	19.5	29.5	6.2

VI. X-Ray Crystallography

Table S15.	Crysta	llographic par	ameters and stru	cture refinement	statistics for con	mpounds 1 _{Eu} ,
1 _{Gd} , 1 _{Tb} , 2 _H	I_0 , and \tilde{I}_0	3.				

Parameter	1 _{Eu}	1 _{Gd}	1 _{Tb}	2 _{Ho}	3
Empirical	$C_{30}H_{59}Cr_2Eu_2$	$C_{30}H_{59}Cr_2Gd_2$	$C_{30}H_{59}Cr_2Tb_2$	$C_{30}H_{48}Cr_2Ho_2$	
formula	O _{41.5}	O _{41.5}	O _{41.5}	O ₃₇	$C_{10}\Pi_{17}CIO_{12}$
Formula					
weight	1491.69	1505.61	1502.27	1434.54	381.23
(g·mol ⁻¹)					
<i>T</i> (K)	150	150	150	150	296
Crystal system	Tetragonal	Tetragonal	Tetragonal	Tetragonal	Monoclinic
Space group	$P4_{3}2_{1}2$	$P4_{3}2_{1}2$	$P4_{1}2_{1}2$	<i>I</i> 4	$P2_{1}/c$
a (Å)	16.2441(3)	16.2257(6)	16.2441(3)	16.2371(6)	8.3636(4)
<i>b</i> (Å)	16.2441(3)	16.2257(6)	16.2441(3)	16.2371(6)	12.1817(6)
<i>c</i> (Å)	38.4605(17)	38.4293(18)	38.4605(17)	20.3655(11)	14.0600(6)
β (deg)	90	90	90	90	97.025(2)
$V(Å^3)$	10148.6(6)	10117.4(9)	10148.6(6)	5369.2(5)	1421.72(12)
Ζ	8	8	8	4	4
$D_{\text{calc}} (g \cdot \text{cm}^{-3})$	1.953	1.973	1.971	1.775	1.781
$\theta_{\min}-\theta_{\max}$ (deg)	2.38-30.50	2.38-26.39	2.39-30.11	2.51-30.41	2.45-30.48
μ (mm ⁻¹)	2.97	3.12	3.29	3.41	0.87
Crystal size	0.12×0.11×0.1	0.1×0.05×0.05	0.11×0.11×0.1	0.09×0.08×0.0	0.13×0.11×0.1
(mm)	0	0.1×0.03×0.03	0.11^0.11^0.1	1	0
Number of					
measured	105349	50195	84053	20459	7680
reflections					
Number of					
independent	13498	9940	9976	5215	2749
reflections					
Number of					
reflections	12821	9054	9384	4997	2464
with $I > 2\sigma(I)$					
R _{int}	0.048	0.069	0.059	0.113	0.022
GOOF	1.042	1.037	1.034	1.095	1.208
$R_{I}^{[a]}, wR_{2}^{[b]} (I$	0.024.0.056	0.022.0.064	0.025.0.055	0.0504.0.1502	0.025.0.006
$> 2\sigma(I)$	0.024, 0.036	0.032, 0.064	0.025, 0.055	0.0394, 0.1392	0.035, 0.096
$R_1^{[a]}, wR_2^{[b]}$ (all	0.027.0.057	0.020.0.0(7	0.020.0.057	0.0(22, 0.1(20)	0.040.0.000
data)	0.027, 0.057	0.039, 0.067	0.029, 0.05/	0.0022, 0.1629	0.040, 0.099
T_{\min}, T_{\max}	0.298, 0.381	0.586, 0.745	0.654, 0.746	0.257, 0.381	0.323, 0.381
$\Delta \rho_{\max}, \Delta \rho_{\min} (e$	1.0 -0.60	0.69 -0.70	0.70 -0.64	1 72 -1 08	0.50 -0.56
Å-3)	1.7, -0.09	0.09, -0.70	0.70, -0.04	1.72, -1.00	0.30, -0.30
$\overline{[a]} \overline{R_I = \Sigma F_{\sigma} - F_{\sigma} }$	$ /\Sigma F_{\rm o} $. [b] $wR_2 = $	$[\Sigma w (F_o^2 - F_c^2)^2 / \Sigma v$	$v(F_o^2)^2]^{1/2}$		