Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Polyacrylamide-Chitosan semi-interpenetrating self-healing network with embedded Keplerate {Mo₁₃₂} for pH-controlled release of Eu-fluorescent tag

Kirill Grzhegorzhevskii^{a,b*}, Ekaterina Rudakova^a, Alexey Krinochkin^{a,b}, Dmitry Kopchuk^{a,b}, Yaroslav Shtaitz^{a,b}, Lidia Adamova^a, Grigory Kim^{a,b}, Elena Rusinova^a and Alisa Shmidt^a

^aUral Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., 620002, Ekaterinburg, Russia

^bI. Ya. Postovsky Institute of Organic Synthesis, Ural branch of RAS, 22/20 S. Kovalevskoy/Akademicheskaya str., 620990, Ekaterinburg, Russia

* Corresponded author: kirillvalentinovich@urfu.ru

Scheme S1. General scheme for the synthesis of the complex Eu^{III}L.

Figure S1. Absorption spectrum of Eu^{III}L in water at room temperature.

Figure S2. Europium(III) cation luminescence spectrum of complex Eu^{III}L (excitation at 312 nm).

$\lambda_{\max}, \operatorname{nm}^{[a]}$	E ^[b] , 10 ⁻³	Φ _{Ln} ,	τ _{H2O} ,	τ _{D2O} ,	$\mathbf{Q}^{[\mathbf{f}]}$
	M ⁻¹ cm ⁻¹	%[c]	ms ^[d]	ms ^[e]	
251, 267, 274 _{sh} , 312, 322 _{sh}	8.9	16.2	1.07	1.86	0.18

Table S1. The photophysical properties of complex Eu^{III}L

^[a]Absorption maxima in H₂O at room temperature; ^[b]The molar extinction coefficient corresponds to the longest absorption wavelength; ^[c]Lanthanide luminescence quantum yields in water solution were determined using [Ru(bpy)₃]Cl₂ ($\Phi = 0.04$ in aerated water¹); ^[d]Lanthanide luminescence lifetime in water; ^[e]Lanthanide luminescence lifetime in D₂O; ^[f]The number of coordinated water molecules was calculated using the formula²: $q_{Eu} = 1.2*(1/\tau_{H2O} - 1/\tau_{D2O} - 0.25)$.

Figure S3. The dependency of η_r/C and $\ln(\eta_s)/C$ on PAAm3 concentration in water.

Figure S4. The swelling kinetics of PAAm@Chit hydrogels prepared with different molecular weights of PAAm: PAAm1 (0.67 MDa), PAAm2 (1.5 MDa), PAAm3 (5.95-6 MDa), and PAAm4 (10.8-11.4 MDa) where the C_{PAAm} is 3.175, 5.925, 5.6, and 6.35 g·L⁻¹, respectively.

Figure S5. The frequency sweep dependency of the storage (G') and loss (G'') modules on the hydrogel composition (blank and POM-embedded) and self-healing process measured at 10 Pa shear stress.

Figure S6. The steady-state fluorescence measurement of the aliquot samples from the receiver (solution) during the releasing experiments of PAAm3@Chit@Mo₁₃₂ loaded with Eu^{III}L. Reference corresponds to the highest possible concentration of the Eu^{III}L in the 250 mL in accordance with its moles loaded in hydrogel (i.e. 4.186×10^{-5} mol·L⁻¹).

References

- 1 K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi and S. Tobita, *Phys. Chem. Chem. Phys.*, 2009, **11**, 9850.
- A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker, L. Royle, A. S. de Sousa, J. A. G. Williams and M. Woods, *J. Chem. Soc. Perkin Trans.* 2, 1999, **2**, 493–504.