Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

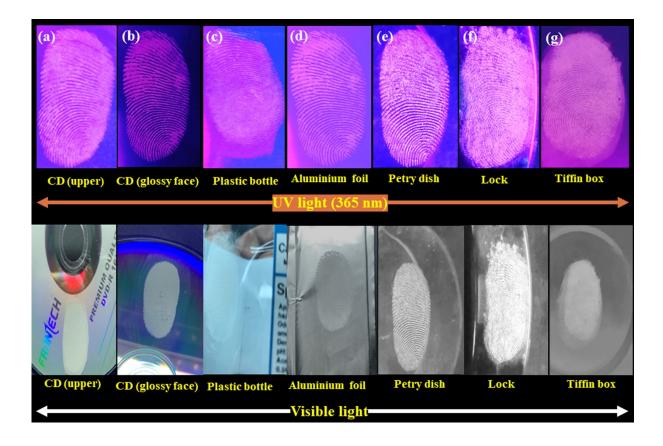
Supplementary Information

Development of Graphitic-N-based Carbon Dots Using Solid-state Synthesis for

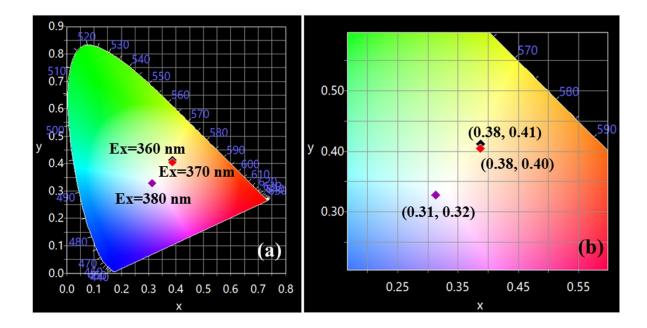
Fingerprinting, LEDs, and Anticounterfeiting.

Ashok Kumar^a, Rinki Kumari^{a,b}, Kanchan Negi^a, and Sumanta Kumar Sahu^{a*}

^aDepartment of Chemistry and Chemical Biology, Indian Institute of Technology (ISM),


Dhanbad 826004, Jharkhand, India.

^bDepartment of Chemistry, Bharat Institute of Engineering and Technology, Ibrahimpatnam,


Hyderabad-501510, Telangana State, India

*Corresponding author. E-mail: <u>sumantchem@gmail.com</u>, <u>sksahu@iitism.ac.in</u>;

Fax: +91 326-2307772; Tel: +91 3262235936, +91 7631042241

Fig. S1 The latent fingerprints (LFPs) developed on different substrates like on (a) compact disc upper face (b) compact disc glossy face (c) plastic solvent bottle (d) foil made of aluminium (e) petri dish made of glass (f) lock, and (g) tiffin box in daylight (visible light) as well as UV irradiation (365 nm).

Fig. S2 (a) CIE Coordinates of RP-CDs at different excitation wavelengths and (b) CIE Enlarged image of RP-CDs

 Table S1. LED parameters of RP-CDs-based LED at different currents.

Excitation	CIE	CRI	ССТ
360 nm	0.3875, 0.4126	59	4061
370 nm	0.3874, 0.4046	61	4014
380 nm 0.3133, 0.3276		81	6481

Table S2. LED parameters of RP-CDs at different excitations

CIE	CRI	ССТ	Current
0.4675, 0.4114	91	2603	700 mA
0.4137, 0.3898	96	3313	600 mA
0.4140, 0.3862	97	3277	500 mA
0.4056, 0.3778	98	3383	400 mA

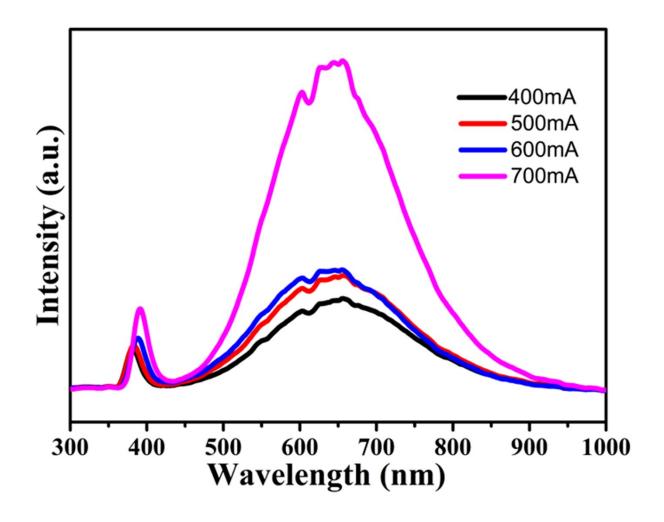


Fig. S3 PL Emission spectrum of RP-CDs-based LED at different currents.

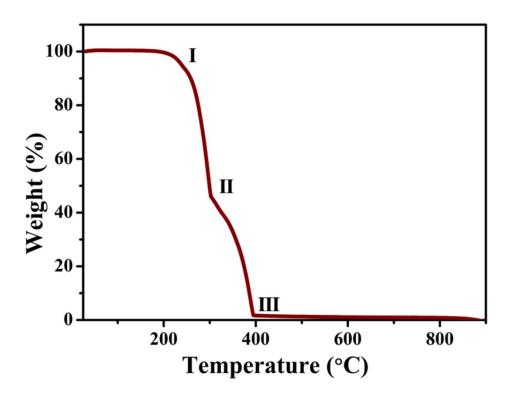


Fig. S4 Thermal gravimetric analysis of RP-CDs.

TGA analysis was performed to analyze the thermal stability of the carbon dots. RP-CDs were completely dried in a vacuum oven at 100 °C for 72 h before doing thermal gravimetric analysis. The TGA curve of RP-CDs is shown in Fig. S4, and the temperature of 230 °C (about 55% weight loss) that happens may be related to the degradation of the carbonyl group (C=O) present in the carbon dots. The imine group (C=N) was responsible for the second weight loss at 306 °C (approx. 45%) and the third curve depicts the total degradation of CDs at 395 °C.

Table S3. The comparative table between previously reported carbon dots with the type of surfaces (where latent fingerprints were taken), fluorescence emission, precursor, and synthesis methods.

Precursors	Synthesis methods	Fluorescence	Type of surface (where LFPs detected)	References
Luminol & coconut water	Hydrothermal method	Blue	Glass, coins, plastics,	[1]
Resorcinol and phloroglucin	Microwave synthesis	Blue and Orange	Foam	[2]
p- phenylenediamine and phosphorus acid.	Hydrothermal method	Red	Glass sheets, aluminum foil, leather, and plastic pieces	[3]
Phloroglucinol and boric acid	Solid state reaction	Red	Metal foil, Plastic sheet	[4]
Phthalic acid and piperazine	Microwave synthesis	Yellow-green	Glass, tinfoil, plastics and weighing paper	[5]
Tartaric acid and triethylene tetramine	Hydrothermal process	Green	Glass slides, tiles, leather, aluminum foil, printing paper, colored surfaces of plastic packing, copper foil, planks, leaves, currencies, and bar codes	[6]
Sodium citrate and urea	Solvothermal method.	Blue	Silicon pieces	[7]
Pyromellitic acid and urea	Solid-state synthesis	Red	Compact disc upper face, compact disc glossy face, plastic solvent bottle, aluminium foil, petri dish (glass), lock (steel), and the tiffin box.	[This work]

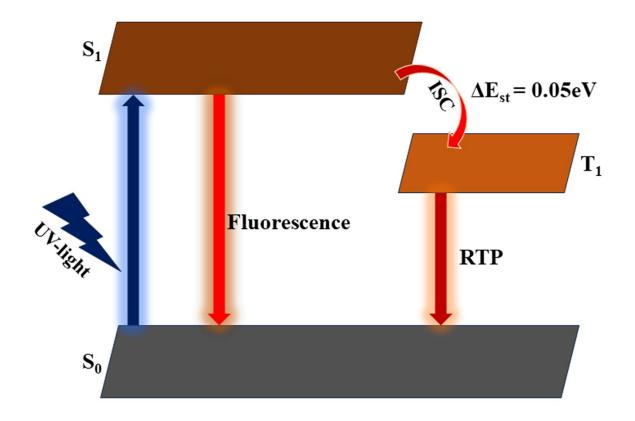


Fig. S5 The energy level diagram of RP-CDs.

References: -

- D. Nugroho, C. Keawprom, S. Chanthai, W.-C. Oh and R. Benchawattananon, Nanomaterials (Basel), 2022, 12, 400.
- 2. Z. Deng, C. Liu, Y. Jin, J. Pu, B. Wang and J. Chen, Analyst, 2019, 144, 4569-4574.
- J. Chen, J.-S. Wei, P. Zhang, X.-Q. Niu, W. Zhao, Z.-Y. Zhu, H. Ding and H.-M. Xiong, ACS Appl. Mater. Interfaces, 2017, 9, 18429-18433.
- 4. X. Niu, T. Song and H. Xiong, Chin. Chem. Lett., 2021, 32, 1953-1956.
- H.-J. Wang, W.-Y. Hou, T.-T. Yu, H.-L. Chen and Q.-Q. Zhang, *Dyes Pigm.*, 2019, **170**, 107623.
- D.-W. Li, X.-F. Zhang, X.-T. Zhang, X.-S. Lv and N. You, *Anal. Methods*, 2023, 15, 1297-1305.
- G. Ren, Y. Meng, Q. Zhang, M. Tang, B. Zhu, F. Chai, C. Wang and Z. Su, New J Chem, 2018, 42, 6824-6830.