Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Visualization for the "black-box" extraction process of Gegen Qinlian

Decoction based on near-infrared spectroscopy

Sijun Wu ^{a,b}, Guoming Zhou ^{a,b}, Xiaoyang Zhang ^{a,b}, Guangpu Fang ^a, Jiahe Qian ^a, Kun Zhang ^c, Wenlong Li ^{a,b,d*}

^a College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of

Traditional Chinese Medicine, Tianjin, 301617, China;

^b State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional

Chinese Medicine, Tianjin, 301617, China;

^c Sichuan Puhua TCM Technology Co., Ltd, Sichuan, 611135, China;

^d Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China

^{*}Corresponding author (Wenlong Li). E-mail address: <u>wshlwl@tjutcm.edu.cn</u>

Fig. S1. Representative chromatograms of extracted solution and reference solution. (a) Extracted solution. (b) Reference solution.

Fig. S2. Scores of the first two principal components of near-infrared spectral data. (a) Without preprocessing. (b) Preprocessing with SNV.

Fig. S3. Correlation diagrams of measured values vs. predictions of CARS-PLS regression models for the components and soluble solids. (a) Puerarin. (b) Berberine hydrochloride. (c) Baicalin. (d) Glycyrrhizic acid. (e) Soluble solids.

Fig. S4. Correlation diagrams of measured values vs. predictions of GP regression models for the components and soluble solids. (a) Puerarin. (b) Berberine hydrochloride. (c) Baicalin. (d) Glycyrrhizic acid. (e) Soluble solids.

Fig. S5. Correlation diagrams of measured values vs. predictions of ELM models. (a) Puerarin. (b) Berberine hydrochloride. (c) Baicalin. (d) Glycyrrhizic acid. (e) Soluble solids.

Fig. S6. Scores of the first two principal components of NIR spectral data. (a) Without preprocessing. (b) Preprocessing with 1st der.

Preprocessing	Puerarin		Berberine hydrochloride		Baicalin		Glycyrrhizic acid		Soluble solids	
methods P	DCa	RMSECV	PCs	RMSECV	PCs	RMSECV	PCs	RMSECV	PCs	RMSECV
	PCS	(mg/mL)		(mg/mL)		(mg/mL)		(mg/mL)		(mg/mL)
Raw spectra	9	0.0704	11	0.0166	9	0.0657	5	0.0095	11	0.5451
MSC	8	0.0639	9	0.0197	10	0.0565	8	0.0063	9	0.6183
SNV	9	0.0555	9	0.0185	9	0.0530	9	0.0063	9	0.4314
1st derivative	5	0.0920	5	0.0286	6	0.0996	5	0.0100	5	1.0240
SG smoothing	9	0.0737	11	0.0217	7	0.0779	9	0.0076	9	0.7927
SNV-SG smoothing	8	0.0775	8	0.0241	9	0.0768	8	0.0087	9	0.8275
1st derivative-SG smoothing	5	0.1040	3	0.0316	4	0.1158	3	0.1160	5	1.2037
SNV-1st derivative	6	0.0871	5	0.0272	5	0.0937	5	0.0095	5	0.9667

 Table S1 Optimization of spectral preprocessing methods for four types of components and soluble solids

Ingradiants	Mathada	Number of		
Ingredients	Methous	variables		
	None	1007		
Durananin	UVE	94		
Puerarin	SPA	34		
	CARS	87		
	None	1007		
Dauhanina hardua ahlanida	UVE	78		
Berberine nydrochloride	SPA	19		
	CARS	60		
-	None	974		
Daiaalin	UVE	82		
Balcalin	SPA	33		
	CARS	105		
	None	1007		
Cluorumhizia agid	UVE	91		
Grycyrmizic acid	SPA	20		
	CARS	98		
-	None	1007		
Coluble colida	UVE	82		
Soluble sollas	SPA	27		
	CARS	127		

 Table S2 Number of selected variables using the three kinds of methods