Electronic Supporting Information

Construction of S-scheme Bi₂S₃/CdIn₂S₄ heterojunction for the

photocatalytic generation of methyl formate

Lipeng Sun, Wenting Wu, Ruiping Wei, Lijing Gao, Jin Zhang, Guoming Xiao* and

Xiaomei Pan*

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China

*Corresponding authors

E-mail: xiaogm426@gmail.com (Prof. Guomin Xiao)

1. Preparation of working electrode

The production process of the working electrode is as follows: the FTO conductive glass was subjected to a 30-minute water treatment to eliminate surface impurities, followed by drying in a vacuum drying oven at 80 °C. Subsequently, the prepared catalyst (5 mg) was dissolved in a mixture of naphthol (50 μ L) and anhydrous ethanol (950 μ L). After 20 minutes of ultrasonic dispersion, a solution of 100 μ L was carefully dripped onto the FTO conductive glass in a repetitive manner, ensuring that the coating area remained within 1 cm². The electrode was ultimately obtained through vacuum drying at 80°C for a duration of 12 hours.

Table S1. Comparison of the S_{BET} , pore volume (V_p) and average pore size (d_p) for diverse samples.

Samples	$S_{BET} (m^2/g)$	$V_p (cm^3/g)$	$d_p(nm)$
Bi ₂ S ₃	16.26	0.041	10.08
$CdIn_2S_4$	41.98	0.147	14.02
$Bi_2S_3/CdIn_2S_4$	30.39	0.185	24.41

Table S2. The photocatalytic conversion rate of Bi_2S_3 , $CdIn_2S_4$ and $Bi_2S_3/CdIn_2S_4$ to MF under different conditions in methanol.^a

Samples -	visible light ^b	simulated sunlight ^b	
	CO ₂	N_2	CO ₂
Bi ₂ S ₃	63	25	186
$CdIn_2S_4$	1561	2154	3250
Bi2S3/CdIn2S4	1956	2365	5464

a Reaction condition was described in Photocatalytic activity measurement.

b The unit of the generation rate was μ mol·h⁻¹·g⁻¹.

Fig. S1. XPS spectra of $Bi_2S_3/CdIn_2S_4$ in dark or in light; (a) Bi 4f peaks; (b) Cd 3d peaks; (c) In 3d peaks.

Fig. S2. XRD of recycled Bi₂S₃/CdIn₂S₄.

Fig. S3. XPS spectra of $Bi_2S_3/CdIn_2S_4$ before and after cyclic reactions.

Photocatalysts	Light sources	Reaction conditions/	Main Product	Photocatalytic efficiencies	Ref.
Bi ₂ S ₃ /CdIn ₂ S ₄	$350 \text{ W Xe lamp} \\ (\lambda > 200 \text{ nm})$	25 °C, Liquid- solid, CO ₂ , methanol	MF	5464 µmol g ⁻¹ h ⁻¹	This work
Bi ₂ S ₃ microspheres	250 W high pressure mercury lamp (UV-vis light)	25 °C, Liquid- solid, CO ₂ , methanol	MF	175 μmol g ⁻¹ h ⁻¹	1
CdIn ₂ S ₄ (from thioacetamide)	250 W high pressure mercury lamp (UV-vis light) $(\lambda > 365 \text{ nm})$	25 °C, Liquid- solid, CO ₂ , methanol	MF	3604 μmol g ⁻¹ h ⁻¹	2
Bi ₂ S ₃ -ZnIn ₂ S ₄ (2 wt%)	250 W high- pressure mercury lamp (UV-vis light)	25 °C, Liquid- solid, CO ₂ , methanol	MF	299.43 µmol g ⁻¹ h ⁻¹	3
0.5 wt% Pd/TiO ₂	300 W Xe lamp (UV light)	25 °C, Liquid- solid, CO ₂ , methanol	MF	1367.22 µmol g ⁻¹ h ⁻	4
hexagonal ZnIn ₂ S ₄	250 W high pressure mercury lamp $(\lambda > 365 \text{ nm})$	25 °C, Liquid- solid, CO ₂ , methanol	MF	762.36 μmol g ⁻¹ h ⁻¹	5
0.3 % Ni/ZnS	250 W high pressure mercury lamp $(\lambda > 365 \text{ nm})$	25 °C, Liquid- solid, CO ₂ , methanol	MF	121.4 μmol g ⁻¹ h ⁻¹	6
TiO ₂ /NCC- EDA(54 g L ⁻¹)	300 W Xenon light with UV cut-off filter $(\lambda > 420 \text{ nm})$	Room temperature, Liquid-soild, CO ₂ , H ₂ O	MF	62.14 μmol g ⁻¹ h ⁻¹	7
MXene/GO/PD I	$350 \text{ W Xe lamp} \\ (\lambda > 200 \text{ nm})$	25 °C, Liquid- solid, CO ₂ , methanol	MF	771.1 μmol g ⁻¹ h ⁻¹	8
CuO/TiO ₂ (A B)	250 W Hg $lamp$ $(\lambda > 365 \text{ nm})$	25 °C, Liquid- solid, CO ₂ , methanol	MF	450 μmol g ⁻¹ h ⁻¹	9

Table S3. Comparison of the reaction conditions and photocatalytic activity withother catalysts for CO_2 /methanol reduction to MF.

Reference

- J. Chen, S. Qin, G. Song, T. Xiang, F. Xin and X. Yin, *Dalton Trans.*, 2013, 42, 15133-15138.
- W. Jiang, X. Yin, F. Xin, Y. Bi, Y. Liu and X. Li, *Appl. Surf. Sci.*, 2014, 288, 138-142.
- J. Chen, F. Xin, H. Niu, C.-J. Mao and J.-M. Song, *Mater. Lett.*, 2017, 198, 1 3.
- B. Wang, S. Zhong, S. Tang, H. Yue, K. Ma, C. Liu and B. Liang, *Ind. Eng. Chem. Res.*, 2021, 60, 9684-9695.
- 5. J. Chen, F. Xin, X. Yin, T. Xiang and Y. Wang, *RSC Adv.*, 2015, **5**, 3833-3839.
- 6. J. Chen, F. Xin, S. Qin and X. Yin, *Chem. Eng. J.*, 2013, **230**, 506-512.
- H. Maimaiti, A. Awati, G. Yisilamu, D. Zhang and S. Wang, *Appl. Surf. Sci.*, 2019, 466, 535-544.
- W. Wu, H. Bi, Z. Zhang, L. Sun, R. Wei, L. Gao, X. Pan, J. Zhang and G. Xiao, *Colloid Surface A*, 2023, 657, 130486.
- Y. Zhao, J. Chen, W. Cai, Y. Bu, Q. Huang, T. Tao and J. Lu, Chem. Phys. Let., 2019, 725, 66-74.