Kinetics and possible mechanism of chlorogenic acid-water complexes formation Piotr Hołowiński, Andrzej L. Dawidowicz,* Rafał Typek ## 1. External calibration for molecular weight determination in DMSO- d_6 using NMR DOSY **Figure S1.** External calibration curve constructed for molecular weight estimation of polyphenolic compounds in DMSO-d₆. 2. Determination of 5-CQA*H₂O molecular weight using external calibration curve in DMSO-d₆ and NMR DOSY **Figure S2.** ¹H DOSY spectrum of dry residue obtained from incubated 5-CQA water solution dissolved in DMSO-d₆. **TABLE S1**. Results of the molecular weight estimation of 5-CQA*H₂O complexes in DMSO-d₆ using NMR DOSY measurements and external calibration method. | Average value of diffusion coefficient of 5-CQA*H ₂ O ^a [m ² /s] | 1.20•10 ⁻¹⁰ | |---|------------------------| | Logarithm of normalized diffusion coefficient of 5-CQA*H ₂ O | -9.877 | | Determined molecular weight of 5-CQA*H ₂ O [g/mol] | 805.42 | | Theoretical molecular weight of 5-CQA*H ₂ O [g/mol] | 744.65 | ^a Average was calculated over all non-overlapping signals of 5-CQA*H₂O-1 and 5-CQA*H₂O-2 as the differences in diffusion coefficients of both 5-CQA*H₂O did not exceed experimental error for the employed method for determination of diffusion coefficients.