Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Information

Mg₂Pb₂Si₂O₇F₂: A new lead-containing alkali earth metal silicate

fluoride with a short cutoff edge

Zhiyuan Zhang,^a Lihan Deng,^b Die Xu,^a Mei Hu,^c Zhencheng Wu,^a Xin Su^{*a} and Yineng Huang^{*a}

^[a] Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining, Xinjiang, 835000, China.

^[b] School of Physics and Materials Science, Changji University, Changji 831100, China.

^[c] Xinjiang Key Laboratory of Solid State Physics and Devices, School of Physical Science and Technology & School of Chemical Engineering and Technology, Xinjiang University, 777 Huarui Street, Urumqi 830017, China.

*Corresponding author: Xin Su E-mail: <u>suxin_phy@sina.com</u> Yineng Huang E-mail:ynhuang@nju.edu.cn

Reagents

CCDC number: 2255929

Table S1. Crystal data and structure refinement for MPSOF.

Table S2. Atomic coordinate, equivalent isotropic displacement parameters (Å²×10³) and bond valence sums (BVS) for MPSOF.

Table S3. Bond lengths [Å] and angles [°] for MPSOF.

Table S4. Cations containing alkali metal, alkaline earth metal and lone pair metal cations silicate fluorides.

Figure S1. EDS spectrum of MPSOF.

Figure S2. The coordination of cations for MPSOF: (a) the Si₂O₇ dimer; (b) the PbO₃F tetrahedron; (c) the Mg(1)O₄F₂ octahedron; (d) the Mg(2)O₄F₂ octahedron.

Figure S3. The Si-O structures of different dimensions in 53 compounds.

Figure S4. The IR spectrum for MPSOF.

Figure S5. Powder XRD patterns at 950 °C for MPSOF.

Figure S6. The birefringence curves of MPSOF.

References

 Table S1. Crystal data and structure refinement for MPSOF.

Empirical formula	MPSOF
Formula weight	669.18
Temperature	298.0 К
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Pbcn
	<i>a</i> = 7.0395(2) Å
Unit cell dimensions	<i>b</i> = 10.9134(4) Å
	<i>c</i> = 10.0979(4) Å
Volume	775.77(5) Å ³
Ζ	4
Density (calculated)	5.730 Mg/m ³
Absorption coefficient	43.869 mm ⁻¹
F (000)	1160
Crystal size	$0.17 \times 0.16 \times 0.15 \text{ mm}^3$
Theta range for data collection	3.444 to 27.511°
	$-9 \le h \le 9,$
Index ranges	$-14 \le k \le 14,$
	-13 ≤ I ≤ 13
Reflections collected	10642
Independent reflections	897 [<i>R</i> _{int} = 0.0671]
Completeness to theta = 27.511°	100.0 %
Max. and min. transmission	0.2038 and 0.0696
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	897 / 0 / 69
Goodness-of-fit on F^2	1.158
Final <i>R</i> indices $[F_o^2 > 2\sigma(F_o^2)]^a$	$R_1 = 0.0218, wR_2 = 0.0494$
<i>R</i> indices (all data) ^a	$R_1 = 0.0238, wR_2 = 0.0509$
Extinction coefficient	0.00253(19)
Largest diff. peak and hole	1.649 and -1.365 e Å ⁻³

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|$ and $wR_{2} = [\sum w (F_{o}^{2} - F_{c}^{2})^{2} / \sum w F_{o}^{4}]^{1/2}$ for $F_{o}^{2} > 2\sigma (F_{o}^{2})$

Atom	x	У	Z	U(eq)	BVS
Pb(1)	0.5884(1)	0.8325(1)	0.5599(1)	11(1)	1.857
Mg(1)	0.5000	0.5000	0.5000	9(1)	2.119
Mg(2)	0.5000	0.3495(2)	0.7500	9(1)	2.030
Si(1)	0.7821(2)	0.5887(1)	0.7478(2)	7(1)	3.934
O(1)	0	0.5318(5)	0.7500	12(1)	2.010
O(2)	0.8038(6)	0.7218(4)	0.6771(4)	11(1)	1.846
O(3)	0.7030(6)	0.6048(4)	0.8984(4)	12(1)	1.982
O(4)	0.6681(6)	0.4862(4)	0.6644(4)	10(1)	1.924
F(1)	0.3796(5)	0.3507(3)	0.5728(3)	10(1)	1.027

 $\label{eq:constraint} \textbf{Table S2.} Atomic coordinates, equivalent isotropic displacement parameters (\AA^2 \times 10^3) and bond valence sums (BVS) for MPSOF.$

Pb(1)-F(1)#3	2.417(4)	O(4)-Mg(2)-O(2)#8	87.50(16)
Pb(1)-O(4)#4	2.620(4)	O(4)#6-Mg(2)-O(2)#8	173.00(18)
Pb(1)-O(3)#5	2.299(4)	O(2)#7-Mg(2)-O(2)#8	96.6(3)
Pb(1)-O(2)	2.271(4)	F(1)#3-Mg(1)-F(1)	180
Si(1)-O(4)	1.613(4)	F(1)-Mg(1)-O(4)	83.46(15)
Si(1)-O(1)	1.655(3)	F(1)#3-Mg(1)-O(4)#3	83.46(15)
Si(1)-O(3)	1.629(5)	F(1)#3-Mg(1)-O(4)	96.54(15)
Si(1)-O(2)	1.626(4)	F(1)-Mg(1)-O(4)#3	96.55(15)
Mg(2)-F(1)	1.980(3)	F(1)-Mg(1)-O(3)#9	91.42(17)
Mg(2)-F(1)#6	1.980(3)	F(1)#3-Mg(1)-O(3)#6	91.42(17)
Mg(2)-O(4)#6	2.092(5)	F(1)-Mg(1)-O(3)#6	88.58(17)
Mg(2)-O(4)	2.092(5)	F(1)#3-Mg(1)-O(3)#9	88.58(17)
Mg(2)-O(2)#7	2.095(4)	O(4)#3-Mg(1)-O(4)	180
Mg(2)-O(2)#8	2.095(4)	O(4)-Mg(1)-O(3)#9	87.88(17)
Mg(1)-F(1)#3	1.979(4)	O(4)-Mg(1)-O(3)#6	92.12(17)
Mg(1)-F(1)	1.979(4)	O(4)#3-Mg(1)-O(3)#9	92.13(17)
Mg(1)-O(4)#3	2.045(4)	O(4)#3-Mg(1)-O(3)#6	87.87(17)
Mg(1)-O(4)	2.045(4)	O(3)#6-Mg(1)-O(3)#9	180
Mg(1)-O(3)#6	2.098(4)	Mg(2)-F(1)-Pb(1)#3	117.10(18)
Mg(1)-O(3)#9	2.098(4)	Mg(1)#3-F(1)-Pb(1)#3	115.80(16)
		Mg(1)-F(1)-Pb(1)#3	115.80(16)
F(1)#3-Pb(1)-O(4)#4	133.78(13)	Mg(1)-F(1)-Mg(2)	99.06(17)
O(3)#5-Pb(1)-F(1)#3	78.08(14)	Mg(1)#3-F(1)-Mg(2)	99.06(17)
O(3)#5-Pb(1)-O(4)#4	71.18(14)	Mg(1)#3-F(1)-Mg(1)	0
O(2)-Pb(1)-F(1)#3	77.69(14)	Si(1)-O(4)-Pb(1)#8	109.2(2)
O(2)-Pb(1)-O(4)#4	72.18(14)	Si(1)-O(4)-Mg(2)	124.1(2)
O(2)-Pb(1)-O(3)#5	95.84(16)	Si(1)-O(4)-Mg(1)	131.4(2)
O(4)-Si(1)-O(1)	102.0(2)	Si(1)-O(4)-Mg(1)#3	131.4(2)
O(4)-Si(1)-O(3)	113.0(2)	Mg(2)-O(4)-Pb(1)#8	94.56(16)
O(4)-Si(1)-O(2)	115.9(2)	Mg(1)-O(4)-Pb(1)#8	95.66(16)
O(3)-Si(1)-O(1)	110.16(18)	Mg(1)#3-O(4)-Pb(1)#8	95.66(16)
O(2)-Si(1)-O(1)	104.7(2)	Mg(1)-O(4)-Mg(2)	93.46(16)
O(2)-Si(1)-O(3)	110.2(2)	Mg(1)#3-O(4)-Mg(2)	93.46(16)
F(1)-Mg(2)-F(1)#6	179.2(3)	Mg(1)#3-O(4)-Mg(1)	0
F(1)#6-Mg(2)-O(4)#6	82.20(16)	Si(1)#11-O(1)-Si(1)	135.9(4)
F(1)-Mg(2)-O(4)#6	97.26(17)	Si(1)-O(3)-Pb(1)#12	118.4(2)
F(1)#6-Mg(2)-O(4)	97.26(17)	Si(1)-O(3)-Mg(1)#13	129.1(3)
F(1)-Mg(2)-O(4)	82.20(16)	Si(1)-O(3)-Mg(1)#6	129.1(3)
F(1)#6-Mg(2)-O(2)#8	92.26(17)	Mg(1)#6-O(3)-Pb(1)#12	104.49(19)
F(1)-Mg(2)-O(2)#8	88.24(17)	Mg(1)#13-O(3)-Pb(1)#12	104.49(19)
F(1)-Mg(2)-O(2)#7	92.26(17)	Mg(1)#6-O(3)-Mg(1)#13	0
F(1)#6-Mg(2)-O(2)#7	88.24(17)	Si(1)-O(2)-Pb(1)	129.9(2)
O(4)#6-Mg(2)-O(4)	89.0(3)	Si(1)-O(2)-Mg(2)#1	120.1(2)

Table S3. Bond lengths $[\text{\AA}]$ and angles [°] for MPSOF.

O(4)#6-Mg(2)-O(2)#7	87.50(16)	Mg(2)#1-O(2)-Pb(1)	105.64(18)
O(4)-Mg(2)-O(2)#7	173.00(18)	O(4)-Mg(2)-O(2)#8	87.50(16)

Symmetry transformations used to generate equivalent atoms:

#1 x+1/2,y+1/2,-z+3/2 #2 x+1/2,-y+3/2,-z+1

#3 -x+1,-y+1,-z+1 #4 -x+3/2,y+1/2,z

#5 -x+3/2,-y+3/2,z-1/2 #6 -x+1,y,-z+3/2

#7 x-1/2,y-1/2,-z+3/2 #8 -x+3/2,y-1/2,z

#9 x,-y+1,z-1/2 #10 x-1/2,-y+3/2,-z+1

#11 -x+2,y,-z+3/2 #12 -x+3/2,-y+3/2,z+1/2

#13 x,-y+1,z+1/2

 Table S4. Cations containing alkali metal, alkaline earth metal and lone pair metal cations silicate fluorides.

No.	Compounds	Space	Anionic groups	M/Si
		group		
1	$Mg_{10}(Si_3O_{14})F_4^{1-2}$	Pnnm	SiO ₄ tetrahedra	3.33
2	Mg ₃ (SiO ₄)F ₂ ³	Pnma	SiO ₄ tetrahedra	3
3	Mg ₃ (SiO ₄)(F _{1.513} (OH) _{0.487}) ⁴	Pnma	SiO₄ tetrahedra	3
4	Mg ₃ (SiO ₄)(F _{1.537} (OH) _{0.463}) ⁴	Pnma	SiO₄ tetrahedra	3
5	$Ca_{5.45}Li_{3.55}(SiO_4)_3O_{0.45}F_{1.5}{}^5$	R ³ m	SiO₄ tetrahedra	3
6	LiSr ₂ (SiO ₄)F ⁶	P21/m	SiO₄ tetrahedra	3
7	Mg ₃ (SiO ₄)F(OH) ⁷	Pnma	SiO₄ tetrahedra	3
8	(Ca _{1.14} Na _{0.86})(Ca _{0.78} Na _{0.22})(SiO ₄)F ⁸	Pnma	SiO₄ tetrahedra	3
9	KCa ₇ (SiO ₄) ₃ F ₃ ⁵	P31c	SiO₄ tetrahedra	2.67
10	Li ₂ Be ₃ Ca ₃ Si ₃ O ₁₂ F ₂ ⁹	1213	SiO₄ tetrahedra	2.6
11	Ca ₅ (SiO ₄) ₂ F(OH) ¹⁰	P21/c	SiO ₄ tetrahedra	2.5
12	$Mg_5(SiO_4)_2F_2^3$	P21/c	SiO₄ tetrahedra	2.5
13	Mg ₅ (SiO ₄) ₂ (F _{1.1} (O D) _{0.9}) ¹¹	P21/c	SiO ₄ tetrahedra	2.5
14	Ca ₅ (SiO ₄) ₂ (F _{1.4} (OH) _{0.6}) ¹²	P21/c	SiO₄ tetrahedra	2.5
15	Ca ₅ (SiO ₄) ₂ (F _{0.6} (OH) _{1.4}) ¹²	P21/c	SiO₄ tetrahedra	2.5
16	Ca ₇ (SiO ₄) ₃ (F _{0.56} (OH) _{1.44}) ¹³	Pnma	SiO₄ tetrahedra	2.333
17	Ca ₇ (SiO ₄) ₃ (F _{0.5} (OH) _{1.5}) ¹³	Pnma	SiO₄ tetrahedra	2.333
18	Ca ₉ (SiO ₄) ₄ F _{0.784} (OH) _{1.2} ¹⁴	P21/c	SiO₄ tetrahedra	2.25
19	Ca ₉ (SiO ₄) ₄ F _{0.96} (OH) _{1.04} ¹⁴	P21/c	SiO₄ tetrahedra	2.25
20	Ca ₄ (Si ₂ O ₇)F ₂ ¹⁵	P21/c	Si ₂ O ₇ dimers	2
21	$NaBa_3Si_2O_7F^{16}$	Стст	Si ₂ O ₇ dimers	2
22	Mg ₂ Pb ₂ Si ₂ O ₇ F ₂ (this work)	Pbcn	Si ₂ O ₇ dimers	2
23	Ca ₄ Si ₂ O ₇ (F _{1.5} (OH) _{0.5}) ¹⁵	P21/c	Si ₂ O ₇ dimers	2
24	$NaBeCa(Si_2O_6)F^{17,18}$	P212121	Si ₂ O ₆ chains	1.5
25	$Na_3SnSi_3O_9F^{19}$	C2/m	Si ₆ O ₁₈ rings	1.333
26	$Ca_{13}Si_{10}O_{28}F_{10}$ · $6H_2O^{20,21}$	RЗ	Si₅O ₁₄ layers	1.3
27	$K_{1.37}Ca_{6.90}(Si_8O_{22})F_{1.91} \cdot 0.264H_2O^{22}$	PĪ	Si ₂ O ₇ dimers	1.034
			Si ₁₂ O ₃₀ chains	
28	K(NaCa)Mg ₅ (Si ₈ O ₂₂)F ₂ ²³	C2/m	Si ₄ O ₁₁ chains	1
29	$Na(NaCa)Mg_{5}Si_{8}O_{22}F_{2}^{23}$	C2/m	Si ₄ O ₁₁ chains	1
30	$K(NaMg_2)(Si_4O_{10}F_2)^{24}$	C2/m	Si ₄ O ₁₀ layers	1
31	$K_{1.37}Ca_{6.57}(Si_8O_{22})F_{1.97} 0.106 (H_2O)^{22}$	PĪ	Si ₂ O ₇ dimers	0.993
			Si ₁₂ O ₃₀ chains	
32	$K_{0.967}(Mg_{0.708}Li_{0.292})(Mg_{0.663}Li_{0.337})_2Si_4O_{10}F_2^{25}$	C2/m	Si ₄ O ₁₀ layers	0.992
33	$(Li_{0.76}Mg_{2.24})Na_{0.70}Si_4O_{10}F_2{\boldsymbol{\cdot}}^2H_2O^{26}$	C2/m	Si ₄ O ₁₀ layers	0.925
34	$(Li_{0.81}Mg_{2.19})Na_{0.70}Si_4O_{10}F_2\textbf{\cdot}2.1H_2O^{26}$	C2/m	Si ₄ O ₁₀ layers	0.925
35	$Ca_2Mg_5Si_8O_{22}F_2^{27}$	C2/m	Si_4O_{11} chains	0.875
36	Mg ₇ Si ₈ O ₂₂ F ₂ ²⁸	Pnnm	Si ₄ O ₁₁ chains	0.875
37	$K_{0.88}Mg_{2.5}Si_4O_{10}F^{29}$	C2/m	Si ₄ O ₁₀ layers	0.845
38	$Na_{0.945}(Ca_{1.73}Sr_{0.15}Na_{0.12})(Si_4O_{10})F^{30}$	PĪ	Si ₄ O ₁₀ chains	0.736

39	$(K_{13.16}Sr_{1.38})(Ca_{24}Na_{7.32})(Si_{70}(O_{166.4}(OH)_{13.6}))(F_2(OH)2)\cdot 0.82H_2O^{31}$	P21/m	Si_6O_{16} chains $Si_{12}O_{30}$	0.655
			chains	
			$Si_{17}O_{43}$ chains	
40	$K_{2.438}Ca_{4.487}Na_{3.513}Si_{16}O_{38}F_2(H_2O)_{1.079}{}^{32}$	<i>P</i> 1	Si ₈ O ₁₉ layers	0.652
41	$K_{2.318} Ca_{4.694} Na_{3.310} Si_{16} O_{38} F_2(H_2 O)_{0.516}{}^{32}$	Pl	Si ₈ O ₁₉ layers	0.645
42	$K_{0.84}Na_{0.16}Ca_4Si_8O_{20}F{\cdot}8H_2O^{33}$	P4/mnc	Si ₄ O ₁₀ layers	0.625
43	KCa ₄ (Si ₄ O ₁₀) ₂ (F _{0.84} (OH) _{0.16})·8H ₂ O ³⁴	P4/mnc	Si ₄ O ₁₀ layers	0.625
44	KCa ₄ Si ₈ O ₂₀ F·8H ₂ O ³³⁻³⁶	P4/mnc	Si ₄ O ₁₀ layers	0.625
45	$Na_{0.16}K_{0.84}Ca_4Si_8O_{20}F{\cdot}8H_2O^{37,38}$	P4/mnc	Si ₄ O ₁₀ layers	0.625
46	KCa ₄ (Si ₈ O ₂₀)F·6.88H ₂ O ³⁷	P4/mnc	Si ₄ O ₁₀ layers	0.625
47	$NaCa_4(Si_8O_{20})F\cdot 8H_2O^{39}$	Pnnm	Si ₄ O ₁₀ layers	0.625
48	$(Na_{0.96}K_{0.04})_{0.97}Ca_4Si_8O_{20}F(H_2O)_8^{40}$	Pnnm	Si ₄ O ₁₀ layers	0.625
49	$K_{0.92}Ca_{3.92}Si_8O_{19.75}F_{0.97}\textbf{\cdot}7.85H_2O^{41,42}$	P4/mnc	Si ₄ O ₁₀ layers	0.605
50	$K_{1.466} Ca_{4.903} Na_{3.179} Si_{16} O_{38} F_2 (H_2 \ O)_{2.561}{}^{32}$	<i>P</i> 1	Si ₈ O ₁₉ layers	0.598
51	$(K_{1.65}Na_{0.83})(Ca_{4.52}Na_{2.48})Si_{16}O_{38}(F(OH))H_2O^{41,42}$	<i>P</i> 1	Si ₈ O ₁₉ layers	0.593
52	$(Na_{1.54}K_{0.80})(Ca_{4.03}Na_{2.97})Si_{16}O_{38}F_2\textbf{\cdot}3.69H_2O^{43}$	<i>P</i> 1	Si ₈ O ₁₉ layers	0.584
53	(Na _{1.29} K _{0.79})(Ca _{4.48} Na _{2.52})Si ₁₆ O ₃₈ F ₂ ·3.47H ₂ O ⁴³	P1	Si ₈ O ₁₉ layers	0.568

Elemen	Wt%	Wt% Sigma	Atomic
t			%
0	22.68	0.27	54.70
F	4.77	0.20	9.69
Mg	5.53	0.10	8.79
Si	12.07	0.13	16.58
Pb	54.95	0.35	10.24
Total:	100.00		100.00

Figure S1. EDS spectrum of MPSOF.

Figure S2. The coordination of cations for MPSOF: (a) the Si_2O_7 dimer; (b) the PbO_3F tetrahedron; (c) the $Mg(1)O_4F_2$ octahedron; (d) the $Mg(2)O_4F_2$ octahedron.

Figure S3. The Si-O structures of different dimensions in 53 compounds.

Figure S4. The IR spectrum for MPSOF.

Figure S5. Powder XRD patterns at 950 °C for MPSOF.

Figure S6. The birefringence curves of MPSOF.

References

- 1 R. E. G. Pacal, J. B. Parise, Am. Mineral., 1992, 77, 681-684.
- 2 R. M. Hazen, H. X. Yang, C. T. Prewitt, T Gasparik, Am. Mineral., 1997, 82, 647-650.
- 3 N. Zhen, K. Wu, Q. Li, S. L Pan, W. H. Gao, Z. H. Yang, New. J. Chem., 2015, **39**, 8866-8873.
- 4 F. Camara, *Can. Mineral.*, 1997, **35**, 1523-1530.
- 5 H Krüger, Z. Kristallogr., 2010, **225**, 418-424.
- 6 A. Akella, D. A. Keszle, *Chem. Mater.*, 1995, **7**, 1299-1302.
- W. H. Taylor, J. West J. Proc. Roy. Soc. A, 1928, 117, 461-474.
 O. Andac, F. P. Glasser, R. A. Howie, Acta Crystallogr., 1997, C53
- 8 O. Andac, F. P. Glasser, R. A. Howie, *Acta Crystallogr.*, 1997, **C53**, 831-833.
- 9 R. K. Rastsvetaeva, O. Y. Rekhlova, V. I. Andrianov, Y. A. Malinovskii, *Dokl. Akad. Nauk SSSR*, 1991, 316, 624-628.
- 10 A. Kirfel, H. M. Hamm, G. Will, *Tscherrnaks Min. Petr. Mitt.*, 1983, **31**, 137-150.
- 11 A. Friedrich, G. A. Lager, P. Ulmer, M. Kunz., W. G. Marshall, *Am. Mineral.*, 2002, **87**, 931-939.
- 12 I. O. Galuskina, B. Lazic, T. Armbruster, E. V. Galuskin, V. M. Gazeev, A. E. Zadov, N. N. Pertsev, L. Jeżak, R. Wrzalik, A. G. Gurbanov, *Am. Mineral.*, 2009, **94**, 1361-1370.
- 13 E. V. Galuskin, V. M. Gazeev, B. Lazic, T. Armbruster, I. O. Galuskina, A. E. Zadov, N. N. Pertsev, W. Wrzalik, P. Dzierżanowski, A. G. Gurbanov, G. Bzowska, *Eur. J. Mineral.*, 2009, **21**, 1045-1059.
- 14 E. V. Galuskin, B. Lazic, T. Armbruster, I. O. Galuskina, N. N. Pertsev, V. M. Gazeev, R. Włodyka, M. Dulski, P. Dzierżanowski, A. E. Zadov, L. S. Dubrovinsky, *Am. Mineral.*, 2012, **97**, 1998-2006.
- 15 S. Saburi, A. Kawahara, C. Henmi, *J. Mineral.*, 1977, **8**, 286-298.
- 16 Z. H. Miao, Y. Yang, Z. L. Wei, Z. H. Yang, S. L. Pan, Sci. China Mater., 2019, 62, 1454-1462.
- 17 J. D. Grice, F. C. Hawthorne, *Can. Mineral.*, 1989, **27**, 193-197.
- 18 E. Cannillo, G. Giuseppetti, V. Tazzoli, Acta Crystallogr., 1967, 23, 255-259.
- 19 C. H. Liao, P. C. Chang, H. M. Kao, K. H. Lii, Inorg. Chem., 2005. 44, 9335-9339.
- 20 W. Mikenda, F. Pertlik, P. Povondra, J. Ulrych, *Miner. Petrol.*, 1997, **61**, 199-209.
- 21 S. Merlino, Acta Crystallogr., 1972, **B28**, 2726-2732.
- 22 E. Kaneva, M. Lacalamita, E. Mesto, E. Schingaro, F. Scordari, N. Vladykin, *Phys. Chem. Miner.*, 2013, **41**, 49-63.
- 23 M. Cameron, S. Sueno, J. J. Papike, C. T. Prewitt, Am. Mineral., 1983, 68, 924-943.
- 24 I. V. Pekov, N. V. Chukanov, G. Ferraris, G. Ivaldi, D. Y. Pushcharovsky, A. E. Zadov, *Eur. J. Mineral.*, 2003, **15**, 447-454.
- 25 H. Toraya, S. Iwai, F. Marcmo, Z Kristallogr., 1977, 146, 73-83.
- 26 H. Kalo, W. Milius, J. Breu, Rsc. Adv., 2012, 2, 8452.
- 27 E. Olsen, Am. Mineral., 1973, 58, 869-872.
- 28 S. Sueno, S. Matsuura, G. V. Gibbs, M. B. B. Jr, Phys. Chem. Minerals., 1998, 25, 366-377.
- 29 Toraya H, Iwai S, Marcmo F, R. Kondo, M. Daimon, Z Kristallogr., 1976, 144, 42-45.
- 30 I. V. Rozhdestvenskaya, L. V. Nikishova, Crystallogr. Rep+., 1998, 43, 589-597.
- 31 I. V. Rozhdestvenskaya, E. Mugnaioli, M. Czank, W. Depmeier, U. Kolb, S. Merlino, *Mineral. Mag.*, 2018, **75**, 2833-2846.
- 32 E. V. Kaneva, R. Y. Shendrik, T. A. Radomskaya, L. F. Suvorova, *Minerals*, 2020, 10, 702.
- 33 K. Stahl, A. Kvick, S. Ghose S, Acta Crystallogr., 1987, B43, 517-523.
- 34 H. Bartl, G. Pfeifer, *Neues. Jahrb. Mineral.*, 1976, **58**, 65.
- 35 G. Y. Chao, Am. Mineral., 1971, 56, 1234-1242.
- 36 W. H. Taylor, S. T. Naray-Szabo, Z. Kristallogr.-Cryst. Mater., 1931, 77, 146-158.
- 37 K. Stahl, Eur. J. Mineral., 1993, 845-850.
- 38 A. A. Colville, C. P. Anderson, P. M. Black, Am. Mineral., 1971, 56, 1222-1233.
- 39 H. Matsueda, Y. Miura, J. Rucklidge, Am. Mineral., 1981, 66, 410-423.
- 40 G. Branoiu, D. Cursaru, S. Mihai, I Ramadan, Rev. Chim.-Bucharest., 2019, 70, 4248-4254.
- 41 G. V. Sokolova, A. A. Kashayev, V. A. Drits, Kristallogr., 1983, 28, 170-172.
- 42 F. Pechar, Cryst. Res. Technol., 1987, 22, 1041-1046.
- 43 R. H. Mitchell, P. C. Burns, Can. Mineral., 2001, 39, 769-777.