Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting information

Accelerating Fe(III)/Fe(II) redox cycling by Zn⁰ in micro-nano dendritic Fe-Zn alloy for enhanced Fenton-like degradation of phenol

Yue Hao^{1,2}, Jiankang Wang³, Qixing Xia⁴, Xiao Zhang¹, Ying Song¹, Zhongping Yao*, ¹

¹School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
²Hefei General Machinery Research Institute, Hefei 230031, China
³College of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
⁴Institute of Culture and Heritage, Northwestern Polytechnical University, Xi'an 710072, China
*Corresponding authors. yaozhongping@hit.edu.cn (Z. Yao)

Fig. S1 SEM images of (a-c) ZVI and (d-f) ZVZ.

Fig. S2 XRD patterns of (a) ZVI and (b) ZVZ.

Fig. S3 XRD patterns with different electrolyte composition.

Fig. S4 XRD patterns with different deposition time.

Fig. S5 XPS spectra of Fe-20Zn: (a) wide scan, (b) Fe2p (c) Zn2p,and (d) O1s.

Fig. S6 High-resolution Fe 2p XPS spectrum of ZVI

Fig. S7 EDS spectrum of Fe-20Zn

Fig. S8 The hysteresis loops of Fe and Fe-20Zn.

Fig. S9 Iron and zinc leaching amount in six cycles.

Fig. S10 XPS spectra of used Fe-20Zn: (a) wide scan, (b) Fe2p (c) C1s, and (d) O1s.

		Catalyst	Phenol	H_2O_2	Time	Efficienc	External	
Catalysts	pН	Dosage	centration	dosage		Linelene	External	Ref.
		(g/L)	(mg/L)	(mM)	(min)	У	energy	
E100	4.0	0.1	35	6	60	99%	-	[1]
IB-350	3.6	1.0	100	45	35	99%	-	[2]
RFAM	6.0	0.5	100	10	60	95%	light	[3]
N-AC/ZVI	3.0	1.0	150	22	60	80%	-	[4]
Ea 207n	4.0	0.1	20	6	20	1000/		This
10-20211	ч.0	0.1	50	U		10070	-	work

Table S1 Comparison of phenol degradation performance with previous studies

References

[1] Xia Q, Zhang D, Yao Z, et al. Revealing the enhancing mechanisms of Fe–Cu bimetallic catalysts for the Fenton-like degradation of phenol[J]. Chemosphere, 2022,

289: 133195.

[2] Jin M, Long M, Su H, et al. Magnetically separable maghemite/montmorillonite
 composite as an efficient heterogeneous Fenton-like catalyst for phenol degradation[J].
 Environmental Science And Pollution Research, 2017, 24(2): 1926-1937.

[3] Wang Y, Liang M, Fang J, et al. Visible-light photo-Fenton oxidation of phenol with rGO-α-FeOOH supported on Al-doped mesoporous silica (MCM-41) at neutral pH: Performance and optimization of the catalyst[J]. Chemosphere, 2017, 182: 468-476.

[4] Messele S, Soares O, Órfão J, et al. Zero-valent iron supported on nitrogencontaining activated carbon for catalytic wet peroxide oxidation of phenol[J]. Applied Catalysis B: Environmental, 2014, 154: 329-338.