Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Amorphous Fe/Co-based Tannic Acid Salts as a Robust Oxygen

Evolution Pre-catalyst

Wenjuan Zhu,^a Xueyang Wang,^b Yi Zhu,^a Lu Fang,^a Chengli Yao,^a Xiaoyang Song,^b Hu Chen,^a Xi

Wang,^a Guoxing Zhu^{* b}

^aSchool of Chemistry and Pharmaceutial Engineering, Hefei Normal University, Hefei 230601,

China.

^bSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China,

Corresponding author, Email : zhuguoxing@ujs.edu.cn

Fig. S1. Nyquist plots of the typical samples measured at 1.58 V (vs RHE).

Fig. S2. XRD pattern of the used catalyst, which only shows the presence K₂CO₃ that comes from

the electrolyte.

Fig. S3. EDS spectrum of the used catalyst, showing the presence of Cu, Fe, Co, C, O, and K

elements.

Fig. S4. XPS spectra of C 1s for the TA-Fe/Co-CNT-1/2 and TA-Fe/Co-CNT-1/2 $_{after}$ products.

Catalysts	Overpotential for 10 or 50 mA cm ⁻² (mV)	Mass activity at overpotential of 350 mV (A g ⁻¹)	TOF values at overpotential of 350 mV (s ⁻¹)	Refs.
(NiFeCoMn) ₃ S ₄	289/361	197.6	0.085	1
Fe _{0.5} Co-P	260/360	90	0.068	2
F-Ni ₃ S ₂	239/-	-	0.021	3
Cu ₃ Mo ₂ O ₉ /NF	-/325	-	0.027	4
FeCoNiP	200/250	-	0.94	5
S, S'-CNT	350/425	45	1.67×10 ⁻⁵	6
Pd ₁₈₀	240/360	560	0.2	7
CuCo ₂ S ₄	310/-	26.9	0.269	8
FeS _x @Co ₃ S ₄	300/350	-	0.9	9
Co _{0.75} Fe _{0.25} @COF	331/420	-	0.238	10
LaSr ₃ Co _{1.5} Fe _{1.5} O _{10- 8}	388/510	15.7	-	11
FeCo ₂ -NC	356/440	-	0.02	12
Fe-LiCoO ₂	343/404	89	-	13
TA-Fe/Co-CNT	315/370	114	0.949	This work

 Table S1. Catalytic activity comparison of the catalysts.

References

- 1. L. Wu, X. P. Shen, Z. Y. Ji, J. R. Yuan, S. K. Yang, G. X. Zhu, L. Z. Chen, L. R. Kong, *Adv. Funct. Mater.*, 2023, 33, 2208170.
- Y. Wang, M. S. Xie, F. F. Dai, J. Liu, L. B. Zhang, R. Z. Zhang, Z. Zhang, W. P. Hu, J. Colloid Interface Sci., 2022, 615, 725-731.
- 3. Q. C, Xu, M. S. Chu, M. M. Liu, J. H. Zhang, H. Jiang, C. Z. Li, Chem. Eng. J., 2021, 411, 128488.
- 4. Y. Gou, L. Yang, Z. A. Liu, A. M. Asiri, J. M. Hu, X. P. Sun, Inorg. Chem., 2018, 57, 1220-1225.
- J. Y. Xu, J. J. Li, D. H. Xiong, B.S. Zhang, Y. F. Liu, K. S. Wu, I. Amorim, W. Li, L. F. Liu, *Chem. Sci.*, 2018, 9, 3470-3476.
- A. M. El-Sawy, I. M. Mosa, D. Su, C. J. Guild, S. Khalid, R. Joesten, J. F. Rusling, S. L. Suib, *Adv. Energy Mater.*, 2016, 6, 1501966.
- 7. K. S. Joya, M. A. Ehsan, N. Babar, Manzar Sohail, Z. H. Yamani, J. Mater. Chem. A, 2019, 7, 9137-9144.
- 8. M. Chauhan, K. P. Reddy, C. S. Gopinath, S. Deka, ACS Catal., 2017, 7, 5871-5879.
- Y. X. Qi, T. T. Li, Y. J. Hu, J. H. Xiang, W. Q. Shao, W. H. Chen, X. Q. Mu, S. L. Liu, C. Y. Chen, M. Yu, S. C. Mu, Chem. Res. Chinese Universities, 2022, 38, 1282-1286.
- 10. X. Liu, L. J. Feng, Y. P. Li, T. Xia, Z. Y. Sui, Q. Chen, *Molecules*, 2022, 27, 5193.
- 11. S. B. Liu, H. Luo, Y. H. Li, Q. X. Liu, J. L. Luo, *Nano Energy*, 2017, 40, 1152-121.
- 12. Y. Lei, R. X. Huang, H. M. Xie, D. D. Zhang, X. Y. Liu, Y. J. Si, N. Li, J. Alloys Compd., 2021, 853, 157070.
- J. Li, G. S. Li, J. H. Wang, C. L. Xue, Y. L. Zhang, X. F. Wu, L. S. Meng, L. P. Li, *Eur. J. Inorg. Chem.*, 2019, 19, 2448-2454.