Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

(E)-2-Methoxyethene-1-sulfonyl fluoride as a precursor of acetylene

for synthesis of C₁/C₂ non-functionalized pyrrolo[2,1-*a*]isoquinoline

derivatives

Jiahong Ma^a, Weikang Lin^b and Hua-Li Qin*

^a School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology,

Wuhan 430070, China;

^bDepartment of Chemical and Petroleum Engineering, Faculty of Engineering Technology & Built

Environment, UCSI University, Cheras, Kuala Lumpur, Malaysia

Email: 11002164224@ucsiuniversity.edu.my;

* School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of

Technology, Wuhan 430070, China.

*E-mail: qinhuali@whut.edu.cn.

Table of contents

S2
S3
S14
S17
S27
S28
S33

1. General Information

All reactions were carried out under an air atmosphere unless otherwise specified. Oil bath was used for the heating reactions. NMR spectra were recorded in CDCl₃ on a 500 MHz (for ¹H), 126 MHz (for ¹³C) spectrometer. All chemical shifts are reported in ppm relative to TMS (0 ppm) as an internal standard. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. The coupling constants were reported in Hertz (Hz). The HPLC experiments were carried out on a Waters e2695 instrument (column: J&K, RP-C18, 5 µm, 4.6 × 150 mm), and the HPLC yields of the products were determined by using the corresponding pure compounds as the external standards. Other reagents used in the reactions were all purchased from commercial sources and used without further purification. The product spots on the thin layer chromatography (TLC) were visualized under ultraviolet light (254 nm or 365 nm).

2. Optimization of the Reaction Conditions

Pr COOEt	+ MeO SO ₂ F	EtoH (2.0 mL) 80°C, 9 h)OEt
1a	2	За	
Entry	2 (X equiv.)	Yield (3a ,%) ^b	
1	1	22	
2	2	21	
3	3	31	
4	4	25	
5	5	22	
6	6	29	

Table S1 Screening the MESF equivalent^a

^{*a*}Reaction conditions: a mixture of 2-(2-ethoxy-2-oxoethyl)isoquinolin-2-ium bromide (1a, 29.6 mg, 0.1 mmol, 1.0 equiv.), (*E*)-2-methoxyethene-1-sulfonyl fluoride (2), Et₃N (0.2 mmol, 2.0 equiv.) dissolved in EtOH (2.0 mL) was stirred at 80 °C for 9 h under air atmosphere. ^{*b*}The yield was determined by HPLC using pure **3a** as the external standard ($t_{R,3a} = 5.381 \text{ min}, \lambda_{max,3a} = 263.0 \text{ nm}, CH_3CN/H_2O = 80:20 (v/v)$).

Pr COOEt	+ MeO SO ₂ F	Et ₃ N (2.0 equiv.) Solvent (2.0 mL) 80℃, 9 h
1a	2	За
Entry	Solvent	$\text{Yield}(\mathbf{3a},\%)^b$
1	DCM	11
2	Acetone	35
3	DMF	7
4	Toluene	13
5	Ethanol	27
6	TBA	33
7	DMSO	54
8	1,4-Dioxane	23
9	THF	29

Table S2 Screening of the solvent^a

^{*a*}Reaction conditions: a mixture of 2-(2-ethoxy-2-oxoethyl)isoquinolin-2-ium bromide (1a, 29.6 mg, 0.1 mmol, 1.0 equiv.), (*E*)-2-methoxyethene-1-sulfonyl fluoride (2, 0.3 mmol, 3.0 equiv.), Et₃N (0.2 mmol, 2.0 equiv.) dissolved in solvent (2.0 mL) was stirred at 80 °C for 9 h under air atmosphere. ^{*b*}The yield was determined by HPLC using pure 3a as the external standard ($t_{R,3a} = 5.381 \text{ min}$, $\lambda_{max,3a} = 263.0 \text{ nm}$, CH₃CN/H₂O = 80:20 (v/v)).

COOEt Br	+ MeO SO ₂ F	Base (2.0 equiv.) DMSO (2.0 mL) 80°C, 9 h
1a	2	3a
Entry	Base	Yield $(3a,\%)^b$
1	Et ₃ N	50
2	DIPEA	40
3	TMEDA	33
4	DBU	52
5	KHCO3	30
6	K ₂ CO ₃	56
7	Na ₂ CO ₃	33
8	NaHCO ₃	42
9	NaOH	19
10	Cs_2CO_3	48
11	Na ₃ PO ₄	41
12	K ₃ PO ₄	34

Table S3 Screening of the Base^a

^{*a*}Reaction conditions: a mixture of 2-(2-ethoxy-2-oxoethyl)isoquinolin-2-ium bromide (1a, 29.6 mg, 0.1 mmol, 1.0 equiv.), (*E*)-2-methoxyethene-1-sulfonyl fluoride (2, 0.3 mmol, 3.0 equiv.), base (0.2 mmol, 2.0 equiv.) dissolved in DMSO (2.0 mL) was stirred at 80 °C for 9 h under air atmosphere. ^{*b*}The yield was determined by HPLC using pure **3a** as the external standard ($t_{R,3a} = 5.381 \text{ min}, \lambda_{max,3a} = 263.0 \text{ nm}, CH_3CN/H_2O = 80:20$ (v/v)).

DODEt Br	+ ^{MeO} SO ₂ F	K ₂ CO ₃ (X equiv.) DMSO (2.0 mL) 80℃, 9 h 3a
14	-	
Entry	K ₂ CO ₃ (X equiv.)	Yield $(3a,\%)^b$
1	1	25
2	1.5	34
3	2	54
4	2.5	47
5	3.0	43
6	4.0	40

Table S4 Screening the base equivalent^a

^{*a*}Reaction conditions: a mixture of 2-(2-ethoxy-2-oxoethyl)isoquinolin-2-ium bromide (1a, 29.6 mg, 0.1 mmol, 1.0 equiv.), (*E*)-2-methoxyethene-1-sulfonyl fluoride (2, 0.3 mmol, 3.0 equiv.), K₂CO₃ dissolved in DMSO (2.0 mL) was stirred at 80 °C for 9 h under air atmosphere. ^{*b*}The yield was determined by HPLC using pure **3a** as the external standard (t_{R,3a} = 5.381 min, $\lambda_{max,3a}$ = 263.0 nm, CH₃CN/H₂O = 80:20 (v/v)).

N_COOEt Br	+ MeO SO ₂ F	K ₂ CO ₃ (2.0 equiv.) DMSO (2.0 mL) T ℃, 9 h
1a	2	3a
Entry	Temperature (°C)	$\mathbf{Yield}(\mathbf{3a}, \mathbf{\%})^b$
1	50	45
2	60	51
3	70	57
4	80	56
5	90	57
6	100	65
7	110	45
8	120	32

Table S5 Screening of the reaction temperature^a

^{*a*}Reaction conditions: a mixture of 2-(2-ethoxy-2-oxoethyl)isoquinolin-2-ium bromide (1a, 29.6 mg, 0.1 mmol, 1.0 equiv.), (*E*)-2-methoxyethene-1-sulfonyl fluoride (2, 0.3 mmol, 3.0 equiv.), K₂CO₃ (0.2 mmol, 2.0 equiv.) dissolved in DMSO (2.0 mL) was stirred at T °C for 9 h under air atmosphere. ^{*b*}The yield was determined by HPLC using pure **3a** as the external standard (t_{R,**3a**} = 5.381 min, $\lambda_{max,$ **3a** $}$ = 263.0 nm, CH₃CN/H₂O = 80:20 (v/v)).

COOEt Br	+ MeO SO ₂ F	K ₂ CO ₃ (2.0 equiv.) DMSO (2.0 mL) 100 °C, Time (h)
1a	2	За
Entry	Time (h)	$\text{Yield}(\mathbf{3a},\%)^b$
1	3	60
2	6	55
3	9	59
4	12	59
5	24	51

 Table S6 Screening the reaction time^a

^{*a*}Reaction conditions: a mixture of 2-(2-ethoxy-2-oxoethyl)isoquinolin-2-ium bromide (1a, 29.6 mg, 0.1 mmol, 1.0 equiv.), (*E*)-2-methoxyethene-1-sulfonyl fluoride (2, 0.3 mmol, 3.0 equiv.), K₂CO₃ (0.2 mmol, 2.0 equiv.) dissolved in DMSO (2.0 mL) was stirred at 100 °C under air atmosphere. ^{*b*}The yield was determined by HPLC using pure **3a** as the external standard ($t_{R,3a} = 5.381 \text{ min}, \lambda_{max,3a} = 263.0 \text{ nm}, CH_3CN/H_2O = 80:20$ (v/v)).

P_COOEt Br	+ MeO SO ₂ F Ca	talyst (30 mol%) <u>CO₃ (2.0 equiv.)</u> MSO (2.0 mL) 100°C, 3 h
1a	2	3a
Entry	Catalyst (30 mol%)	Yield (3a ,%) ^b
1	CuBr	67
2	CuCl	75
3	Cu ₂ O	82
4	CuI	63
5	CuCl ₂	53
6	CuBr ₂	56
7	CuO	63
8	CuSO ₄	60
9	CuF_2	47
10	$Cu(acac)_2$	68
11	Cu(OTf) ₂	64
12	Cu(PF ₆)(CH ₃ CN) ₄	48
13	/	57

Table S7 Screening of the catalytic system^a

^{*a*}Reaction conditions: a mixture of 2-(2-ethoxy-2-oxoethyl)isoquinolin-2-ium bromide (1a, 29.6 mg, 0.1 mmol, 1.0 equiv.), (*E*)-2-methoxyethene-1-sulfonyl fluoride (2, 0.3 mmol, 3.0 equiv.), K₂CO₃ (0.2 mmol, 2.0 equiv.) dissolved in DMSO (2.0 mL) was stirred at 100 °C for 3 h under air atmosphere. ^{*b*}The yield was determined by HPLC using pure **3a** as the external standard ($t_{R,3a} = 5.381$ min, $\lambda_{max,3a} = 263.0$ nm, CH₃CN/H₂O = 80:20 (v/v)).

N_COOEt Br	+ MeO SO ₂ F -	Cu ₂ O (X mol%) K ₂ CO ₃ (2.0 equiv.) DMSO (2.0 mL) 100°C, 3 h	N COOEt
1a	2	3	la
Entry	Cu ₂ O (X mol%)	Yield (3a ,%	$)^b$
1	5	69	
2	10	72	
3	15	67	
4	20	70	
5	25	74	
6	30	84	
7	50	77	

Table S8 Screening the loading amount of Cu catalyst^a

^{*a*}Reaction conditions: a mixture of 2-(2-ethoxy-2-oxoethyl)isoquinolin-2-ium bromide (1a, 29.6 mg, 0.1 mmol, 1.0 equiv.), (*E*)-2-methoxyethene-1-sulfonyl fluoride (2, 0.3 mmol, 3.0 equiv.), K₂CO₃ (0.2 mmol, 2.0 equiv.) and Cu₂O dissolved in DMSO (2.0 mL) was stirred at 100 °C for 3 h under air atmosphere. ^{*b*}The yield was determined by HPLC using pure **3a** as the external standard ($t_{R,3a} = 5.381 \text{ min}$, $\lambda_{max,3a} = 263.0 \text{ nm}$, CH₃CN/H₂O = 80:20 (v/v)).

COOEt Br	+ MeO SO ₂ F	Cu ₂ O (30 mol%) Ligand (30 mol%) K ₂ CO ₃ (2.0 equiv.) DMSO (2.0 mL) 100°C, 3 h
1a	2	3a
Entry	Ligand (30 mol%)	Yield (3a ,%) ^b
1	/	79
2	DPPF	80
3	DPPB	74
4	DPPP	72
5	DPPE	73
6	Xantphos	72
7	DPE-phos	70
8	BINAP	65
9	S-phos	54
10	X-phos	28
11	Ph ₃ P	70

Table S9 Screening of the ligand^a

^{*a*}Reaction conditions: a mixture of 2-(2-ethoxy-2-oxoethyl)isoquinolin-2-ium bromide (1a, 29.6 mg, 0.1 mmol, 1.0 equiv.), (*E*)-2-methoxyethene-1-sulfonyl fluoride (2, 0.3 mmol, 3.0 equiv.), K₂CO₃ (0.2 mmol, 2.0 equiv.) and Cu₂O (0.03 mmol, 30 mol%) dissolved in DMSO (2.0 mL) was stirred at 100 °C for 3 h under air atmosphere. ^{*b*}The yield was determined by HPLC using pure **3a** as the external standard (t_{R,3a} = 5.381 min, $\lambda_{max,3a} = 263.0$ nm, CH₃CN/H₂O = 80:20 (v/v)).

N_COOEt Br	+ MeO SO ₂ F	Cu ₂ O (30 mol%) K ₂ CO ₃ (2.0 equiv.) DMSO (2.0 mL) T [°] C, 3 h
1a	2	За
Entry	Temperature (°C)	Yield(3a ,%) ^b
1	40	17
2	50	24
3	60	39
4	70	43
5	80	52
6	90	69
7	100	76
8	110	62
9	120	46
10	130	37

Table S10 Screening of the reaction temperature^a

^{*a*}Reaction conditions: a mixture of 2-(2-ethoxy-2-oxoethyl)isoquinolin-2-ium bromide (1a, 29.6 mg, 0.1 mmol, 1.0 equiv.), (*E*)-2-methoxyethene-1-sulfonyl fluoride (2, 0.3 mmol, 3.0 equiv.), K₂CO₃ (0.2 mmol, 2.0 equiv.) and Cu₂O (0.03 mmol, 30 mol%) dissolved in DMSO (2.0 mL) was stirred at T °C for 3 h under air atmosphere. ^{*b*}The yield was determined by HPLC using pure **3a** as the external standard (t_{R,3a} = 5.381 min, $\lambda_{max,3a} = 263.0$ nm, CH₃CN/H₂O = 80:20 (v/v)).

N_COOEt Br	+ MeO SO ₂ F	Cu ₂ O (30 mol%) K ₂ CO ₃ (2.0 equiv.) DMSO (2.0 mL) 100 °C, Time (h)
1a	2	За
Entry	Time (h)	Yield(3a ,%) ^b
1	0.5	42
2	1.0	47
3	2.0	56
4	3.0	71
5	4.0	74
6	5.0	73
7	6.0	70
8	7.0	69
9	8.0	67
10	9.0	70
11	10.0	66

Table S11 Screening of the reaction time^a

^{*a*}Reaction conditions: a mixture of 2-(2-ethoxy-2-oxoethyl)isoquinolin-2-ium bromide (1a, 29.6 mg, 0.1 mmol, 1.0 equiv.), (*E*)-2-methoxyethene-1-sulfonyl fluoride (2, 0.3 mmol, 3.0 equiv.), K₂CO₃ (0.2 mmol, 2.0 equiv.) and Cu₂O (0.03 mmol, 30 mol%) dissolved in DMSO (2.0 mL) was stirred at 100 °C under air atmosphere. ^{*b*}The yield was determined by HPLC using pure **3a** as the external standard (t_{R,3a} = 5.381 min, $\lambda_{max,3a} = 263.0$ nm, CH₃CN/H₂O = 80:20 (v/v)).

3. Experimental Procedures

3.1 General procedure for preparation of substituted isoquinoline salts $(1)^1$

A mixture of isoquinolines (I, 10 mmol, 1.0 equiv.), bromines (II, 10 mmol, 1.0 equiv.) in acetone (10 mL) was stirred at room temperature or reflux temperature for 24 hours. The reaction mixture was cooled at room temperature, filtered under reduced pressure and the filter cake was washed with acetone (5 mL \times 3) and diethyl ether (5 mL \times 3). Finally, the residue was dried in vacuum to obtain the isoquinoline salts (1).

3.2 General procedure for preparation of (E)-2-Methoxyethene-1-sulfonyl Fluoride $(2)^2$

Step 1:³ (CH₃O)₂CHCH₂Br (50.7 g, 0.3 mol) was added dropwise to a solution of Na₂SO₃ (37.8 g, 0.3 mol, 1.0 equiv.) in H₂O (240 mL) with stirring at 55 °C. The mixture was then refluxed for 7 h and the solvent was evaporated in vacuo. The resulting solid residue was dissolved in a warm mixture of H₂O (64 mL) and EtOH (360 mL), and the mixture was refluxed with stirring for 30 min. After removal of some insoluble material by filtration of the hot mixture, the filtrate was cooled at -20 °C. The crystalline sodium salt was collected by filtration: 40.0 g (70% yield).

Step 2:⁴ A 500 mL round-bottom flask was charged with the sulfonate (40.0 g, 0.2 mol). SOCl₂ (152 mL, 2.1 mol, 10.5 equiv.) was added and the mixture was heated to reflux for 6 h. The bulk of the excess SOCl₂ was removed by distillation, and the last traces were removed by addition of EA and rotary evaporation. The solvent was evaporated to give crude (*E*)-2-methoxyethene-1-sulfonyl chloride, which was used directly in the next step.

Step 3:^{4,5} KHF₂ (156.2 g, 2.0 mol) was added to 400 mL water and a nearly saturated KHF₂ solution formed, when the solution approached room temperature after 1 h. At

this point, the resulting crude (*E*)-2-methoxyethene-1-sulfonyl chloride was dissolved in CH₃CN (120 mL) and treated with saturated aqueous KHF₂ (200 mL). The reaction mixture was stirred at room temperature overnight, and the sulfonyl fluoride was extracted with EA (3×250 mL), dried over anhydrous Na₂SO₄, and concentrated to dryness. Further distillation at 70 °C under reduced pressure with an oil-pump helped to remove the impurities and gave pure (*E*)-2-methoxyethene-1- sulfonyl fluoride (**2**) as a colorless liquid (11.2 g, 40% yield over two steps).

3.3 General procedure for preparation of 3a-3t

An oven-dried reaction tube equipped with a magnetic stirring bar was charged with isoquinolinium *N*-ylides (1, 1.0 mmol), Cu₂O (30 mol%, 43.0 mg), K₂CO₃ (2.0 mmol, 2.0 equiv., 276.0 mg), DMSO (5.0 mL) and 2-methoxyethene-1-sulfonyl fluoride (MESF, 3.0 mmol, 3.0 equiv., 420.0 mg). Then the mixture was stirred at 100 °C for 3 h. After the reaction was completed, the mixture was extracted with ethyl acetate ($3 \times 20 \text{ mL}$) and the combined organic layers were further washed with brine, and dried over anhydrous sodium sulfate. The solvent was concentrated under reduced pressure and the residue was further purified by flash silica gel chromatography using a mixture of petroleum ether, dichloromethane and ethyl acetate as eluent to afford the title products **3**.

3.4 General procedure for preparation of 4

To a solution of **3a** (5.0 mmol, 1.20 g, 1.0 equiv.) in dry THF (5 mL), NBS (5.5 mmol, 0.98 g, 1.1 equiv) was added in portions at a temperature of 0 °C. The solution was

allowed to warm to room temperature overnight, and then the reaction was quenched by saturated sodium bicarbonate and extracted three times with EA. The combined organic layer was dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure. The remaining oil was purified using silica chromatography (PE/EtOAc = 10:1) to obtain 4 as a white solid (1.46 g, 92% yield).

3.5 General procedure for preparation of 5

1-Bromopyrrolo[2,1-*a*]isoquinoline **4** (1.0 mmol), 4-methoxyphenylboronic acid (1.5 mmol), $PdCl_2(PPh_3)_2$ (0.05 mmol), and K_3PO_4 (2.0 mmol) were added to a Schlenk flask. Then, toluene (3.0 mL) was added through a syringe and the mixture was stirred at 100 °C under an argon atmosphere for 12 h. After the reaction was complete, the mixture was cooled to room temperature and concentrated under reduced pressure, and the residue was subjected to flash column chromatography with petroleum ether as eluent to give the desired product **5** as a white solid (248 mg, 72% yield).

4. Characterization

Ethyl pyrrolo[2,1-a]isoquinoline-3-carboxylate (**3a**).⁶ White solid, 187 mg, 78 % yield. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate = 10:1 (v/v) as eluent. ¹**H NMR** (500 MHz, CDCl₃) δ 9.23 (d, J = 7.5 Hz, 1H), 8.11 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 7.5 Hz, 1H), 7.55-7.48 (m, 3H), 7.00 (d, J = 5.0 Hz, 2H), 4.40 (q, J = 7.0 Hz, 2H), 1.43 (t, J = 7.0 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 161.5, 135.4, 127.9, 127.6, 127.3, 126.9, 125.2, 125.0, 123.2, 120.6, 116.7, 112.6, 101.0, 60.0, 14.6.

3b

Methyl pyrrolo[2,1-a]isoquinoline-3-carboxylate (**3b**).⁷ White solid, 180 mg, 80 % yield. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate = 10:1 (v/v) as eluent. ¹H NMR (500 MHz, CDCl₃) δ 9.21 (d, J = 7.5 Hz, 1H), 8.10 (d, J = 7.5 Hz, 1H), 7.64 (d, J = 7.5 Hz, 1H), 7.53-7.48 (m, 3H), 6.98 (d, J = 3.5 Hz, 2H), 3.93 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.9, 135.5, 127.9, 127.7, 127.4, 126.9, 125.2, 124.9, 123.2, 120.7, 116.3, 112.7, 101.1, 51.2.

Tert-butyl pyrrolo[2,1-a]isoquinoline-3-carboxylate (**3c**).⁸ White solid, 200 mg, 75% yield. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate = 10:1 (v/v) as eluent. ¹H NMR (500 MHz, CDCl₃) δ 9.22 (d, *J* = 7.5 Hz, 1H), 8.11 (d, *J* = 8.0 Hz, 1H), 7.65 (d, *J* = 7.5 Hz, 1H), 7.54-7.43 (m, 3H), 6.97 (d, *J* = 8.0 Hz, 2H), 1.65 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 161.2, 135.1, 127.8, 127.6, 127.2, 126.9, 125.4, 125.1, 123.1, 120.5, 118.0, 112.4, 100.7, 80.7, 28.7.

Ethyl 6-bromopyrrolo[2, 1-a]isoquinoline-3-carboxylate (**3d**). White solid, 181 mg, 57 % yield. M.p. 92-94 °C. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate = 10:1 (v/v) as eluent. ¹H NMR (500 MHz, CDCl₃) δ 9.23 (d, *J* = 7.5 Hz, 1H), 7.96 (d, *J* = 8.5 Hz, 1H), 7.80 (d, *J* = 2.0 Hz, 1H), 7.61 (dd, *J*₁ = 2.0 Hz, *J*₂ = 8.5 Hz, 1H), 7.49 (d, *J* = 4.5 Hz, 1H), 6.97 (d, *J* = 4.0 Hz, 1H), 6.90 (d, *J* = 7.5 Hz, 1H), 4.40 (q, *J* = 7.5 Hz, 2H), 1.42 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.4, 134.6, 128.7, 128.1, 126.8, 126.8, 126.2, 125.2, 123.4, 120.6, 116.8, 109.1, 101.6, 60.4, 14.7. HRMS-ESI (m/z) calcd. for [C₁₅H₁₃BrNO₂]⁺ ([M+H]⁺): 318.0125, found: 318.0132.

Ethyl 7-bromopyrrolo[2,1-a]isoquinoline-3-carboxylate (**3e**). White solid, 181 mg, 57 % yield. M.p. 122-124 °C. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate = 10:1 (v/v) as eluent. ¹H NMR (500 MHz, CDCl₃) δ 9.25 (d, J = 8.0 Hz, 1H), 8.04 (d, J = 8.0 Hz, 1H), 7.71 (d, J = 7.5 Hz, 1H), 7.51 (d, J = 4.0 Hz, 1H), 7.37-7.33 (m, 2H), 6.99 (d, J = 4.0 Hz, 1H), 4.41 (q, J = 7.0 Hz, 2H), 1.43 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.5, 134.5, 131.2, 128.3, 127.2, 126.8, 126.3, 122.7, 122.1, 121.0, 117.1, 111.3, 101.8, 60.3, 14.7. HRMS-ESI (m/z) calcd. for [C₁₅H₁₃BrNO₂]⁺ ([M+H]⁺): 318.0125, found: 318.0128.

3f

Ethyl 8-bromopyrrolo[2, *1-a*]*isoquinoline-3-carboxylate* (**3f**). White solid, 239 mg, 75% yield. M.p. 148-149 °C. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate = 40:1 (v/v) as eluent. ¹H NMR (500 MHz, CDCl₃) δ 9.23 (d, *J* = 7.5 Hz, 1H), 7.96 (d, *J* = 8.5 Hz, 1H), 7.81 (d, *J* = 1.0 Hz, 1H), 7.61 (dd, *J*₁ = 1.5 Hz, *J*₂ = 8.5 Hz, 1H), 7.50 (d, *J* = 4.0 Hz, 1H), 6.98 (d, *J* = 4.5 Hz, 1H), 6.90 (d, *J* = 7.5 Hz, 1H), 4.40(q, *J* = 7.0 Hz, 2H), 1.42 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.5, 134.8, 130.8, 129.4, 129.3, 126.1, 124.8, 124.0, 121.2, 120.9, 117.1, 111.5, 101.4, 60.2, 14.7. HRMS-ESI (m/z) calcd. for [C₁₅H₁₃BrNO₂]⁺ ([M+H]⁺):

Ethyl 10-bromopyrrolo[2,1-*a*]*isoquinoline-3-carboxylate* (**3g**). White solid, 216 mg, 68 % yield. M.p. 103-105 °C. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate = 10:1 (v/v) as eluent. ¹H NMR (500 MHz, CDCl₃) δ 9.34 (d, J = 7.5 Hz, 1H), 8.14 (d, J = 4.0 Hz, 1H), 7.84 (d, J = 7.5 Hz, 1H), 7.61 (d, J = 7.5 Hz, 1H), 7.54 (d, J = 4.5 Hz, 1H), 7.29 (t, J = 8.0 Hz, 1H), 6.96 (d, J = 7.5 Hz, 1H), 4.42 (q, J = 7.0 Hz, 2H), 1.45 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.6, 134.0, 133.1, 131.0, 127.3, 126.7, 125.5, 124.7, 120.1, 119.1, 116.9, 112.8, 107.6, 60.3, 14.6. HRMS-ESI (m/z) calcd. for [C₁₅H₁₃BrNO₂]⁺ ([M+H]⁺): 318.0125, found: 318.0129.

Ethyl 7-hydroxypyrrolo[2,1-a]isoquinoline-3-carboxylate (**3h**). White solid, 163 mg, 64 % yield. M.p. 167-169 °C. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate = 5:1 (v/v) as eluent. ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.34 (s, 1H), 9.08 (d, *J* = 7.5 Hz, 1H), 7.73 (d, *J* = 7.5 Hz, 1H), 7.45-7.40 (m, 3H), 7.17 (d, *J* = 3.5 Hz, 1H), 6.99 (d, *J* = 8.0 Hz, 1H), 4.32 (q, *J* = 7.0 Hz, 2H), 1.34 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.0, 153.6, 135.3, 129.3, 126.2, 123.3, 120.8, 117.4, 116.1, 114.3, 112.2, 107.8, 102.2, 60.1, 14.9. HRMS-ESI (m/z) calcd. for [C₁₅H₁₄NO₃]⁺ ([M+H]⁺): 256.0969, found: 256.0967.

Pyrrolo[2,1-a]isoquinoline-3-carbonitrile (**3i**).⁶ White solid, 115 mg, 60 % yield. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate = 10:1 (v/v) as eluent. ¹**H NMR** (500 MHz, CDCl₃) δ 8.03 (d, J = 8.0 Hz, 1H), 7.97 (d, J = 7.5 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.56-7.47 (m, 2H), 7.25 (d, J = 4.0 Hz, 1H), 6.97 (d, J = 7.0 Hz, 1H), 6.90 (d, J = 4.0 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 134.3, 128.5, 127.9, 127.7, 127.4, 125.1, 123.1, 122.6, 121.9, 113.8, 113.7, 101.5, 97.8.

N-phenylpyrrolo[2,1-a]isoquinoline-3-carboxamide (**3j**). Yellow solid, 189 mg, 66 % yield. M.p. 182-184 °C. Purified by column chromatography on silica gel using petroleum ether / dichloromethane = 1:1 (v/v) as eluent. ¹**H NMR** (500 MHz, CDCl₃) δ 9.40 (d, J = 7.5 Hz, 1H), 8.13 (d, J = 7.5 Hz, 1H), 7.74 (s, 1H), 7.66 (t, J = 9.0 Hz, 3H), 7.57-7.49 (m, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.29-7.28 (m, 1H), 7.16 (t, J = 7.5 Hz, 1H), 7.03 (d, J = 4.5 Hz, 1H), 7.00 (d, J = 7.5 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 160.0, 138.2, 135.1, 129.4, 129.3, 127.9, 127.7, 127.4, 127.0, 125.4, 124.3, 123.1, 120.6, 120.3, 119.3, 116.5, 115.5, 112.8, 100.7. **HRMS-ESI** (m/z) calcd. for [C₁₉H₁₅N₂O]⁺ ([M+H]⁺): 287.1179, found: 287.1176.

Phenyl(pyrrolo[2,1-a]isoquinolin-3-yl)methanone (**3k**).⁷ Yellow solid, 190 mg, 70 % yield. Purified by column chromatography on silica gel using petroleum ether / dichloromethane = 1:1 (v/v) as eluent. ¹H NMR (500 MHz, CDCl₃) δ 9.62 (d, *J* = 7.5 Hz, 1H), 8.18 (d, *J* = 7.5 Hz, 1H), 7.86 (d, *J* = 7.5 Hz, 2H), 7.73 (d, *J* = 7.0 Hz, 1H), 7.59-7.49 (m, 5H), 7.32 (d, *J* = 4.5 Hz, 1H), 7.12 (d, *J* = 7.5 Hz, 1H), 7.05 (d, *J* = 4.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 185.5, 140.7, 137.1, 131.2, 129.2, 129.0, 128.3, 128.1, 127.8, 127.0, 126.0, 125.9, 124.8, 123.7, 113.5, 102.0. Note: In the ¹³C NMR spectrum of **3k**, theoretically, there should be seventeen peaks. Due to the compact overlaying, it is difficult to specify the overlaying peaks.

Naphthalen-2-yl(pyrrolo[2,1-a]isoquinolin-3-yl)methanone (**31**).⁶ Yellow solid, 167 mg, 52 % yield. Purified by column chromatography on silica gel using petroleum ether / dichloromethane = 1:1 (v/v) as eluent. ¹H NMR (500 MHz, CDCl₃) δ 9.65 (d, *J* = 7.5 Hz, 1H), 8.36 (s, 1H), 8.22-8.20 (m, 1H), 7.98-7.93 (m, 4H), 7.76-7.74 (m, 1H), 7.62-7.56 (m, 4H), 7.39 (d, *J* = 5.0 Hz, 1H), 7.16 (d, *J* = 7.5 Hz, 1H), 7.09 (d, *J* = 4.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 185.5, 138.0, 137.2, 134.9, 132.6, 130.0, 129.3, 129.1, 128.2, 128.2, 128.0, 127.9, 127.8, 127.1, 126.8, 126.2, 126.0, 125.9, 125.1, 124.9, 123.8, 113.6, 102.2.

(4-Methoxyphenyl)(pyrrolo[2,1-a]isoquinolin-3-yl)methanone (**3m**).⁶ Yellow solid, 151 mg, 50 % yield. Purified by column chromatography on silica gel using petroleum ether / dichloromethane = 1:1 (v/v) as eluent. ¹H NMR (500 MHz, CDCl₃) δ 9.54 (d, J = 8.0 Hz, 1H), 8.17 (d, J = 7.5 Hz, 1H), 7.89-7.86 (m, 2H), 7.72-7.71 (m, 1H), 7.59-7.52 (m, 2H), 7.32 (d, J = 4.5 Hz, 1H), 7.09 (d, J = 7.5 Hz, 1H), 7.05 (d, J = 4.5 Hz, 1H), 7.09 (d, J = 7.5 Hz, 1H), 7.05 (d, J = 4.5 Hz, 1H), 7.02-6.99 (m, 2H), 3.90 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 184.6, 162.4, 136.7, 133.2, 131.5, 129.0, 128.0, 127.8, 127.0, 126.0, 125.3, 124.9, 123.7, 113.6, 113.3, 101.8, 55.6. Note: In the ¹³C NMR spectrum of **3m**, theoretically, there should be eighteen peaks. Due to the compact overlaying, it is difficult to specify the overlaying peaks.

Pyrrolo[2,1-a]isoquinolin-3-yl(p-tolyl)methanone (**3n**).⁶ Yellow solid, 257 mg, 90 % yield. Purified by column chromatography on silica gel using petroleum ether / dichloromethane = 1:1 (v/v) as eluent. ¹H NMR (500 MHz, CDCl₃) δ 9.59 (d, J = 7.5 Hz, 1H), 8.17 (d, J = 7.5 Hz, 1H), 7.77 (d, J = 8.0 Hz, 2H), 7.73-7.71 (m, 1H), 7.59-7.53 (m, 2H), 7.33-7.30 (m, 3H), 7.11 (d, J = 8.0 Hz, 1H), 7.05 (d, J = 4.0 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 185.5, 141.8, 138.0, 136.9, 129.4, 129.0, 129.0, 128.1, 127.8, 127.0, 126.0, 125.8, 125.0, 124.9, 123.7, 113.4, 101.9, 21.7.

(4-Fluorophenyl)(pyrrolo[2,1-a]isoquinolin-3-yl)methanone (**30**).⁶ Yellow solid, 119 mg, 41 % yield. Purified by column chromatography on silica gel using petroleum ether / dichloromethane = 1:1 (v/v) as eluent. ¹H NMR (500 MHz, CDCl₃) δ 9.57 (d, J = 7.0 Hz, 1H), 8.19 (d, J = 7.5 Hz, 1H), 7.89-7.87 (m, 2H), 7.75-7.73 (m, 1H), 7.61-7.55 (m, 2H), 7.29 (d, J = 4.5 Hz, 1H), 7.20-7.17 (m, 2H), 7.14 (d, J = 7.5 Hz, 1H), 7.07 (d, J = 4.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 183.9, 164.7 (d, J = 252.0 Hz), 137.1,

136.8 (d, *J* = 3.7 Hz), 131.5 (d, *J* = 8.2 Hz), 129.0, 128.1, 127.8, 127.0, 125.8, 125.7, 124.7, 124.5, 123.7, 115.3 (d, *J* = 21.8 Hz), 113.5, 102.0.

(4-Chlorophenyl)(pyrrolo[2,1-a]isoquinolin-3-yl)methanone (**3p**).⁶ Yellow solid, 122 mg, 40 % yield. Purified by column chromatography on silica gel using petroleum ether / dichloromethane = 1:1 (v/v) as eluent. ¹H NMR (500 MHz, CDCl₃) δ 9.58 (d, J = 7.5 Hz, 1H), 8.19 (d, J = 7.5 Hz, 1H), 7.80 (d, J = 8.5 Hz, 2H), 7.75-7.73 (m, 1H), 7.61-7.56 (m, 2H), 7.48 (d, J = 8.5 Hz, 2H), 7.28 (d, J = 4.5 Hz, 1H), 7.14 (d, J = 7.5 Hz, 1H), 7.07 (d, J = 4.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 184.0, 165.9, 139.1, 137.5, 137.4, 130.6, 129.1, 128.6, 128.3, 128.0, 127.1, 125.9, 124.7, 124.5, 123.8, 113.7, 102.3.

(4-Bromophenyl)(pyrrolo[2,1-a]isoquinolin-3-yl)methanone (3q).⁹ Yellow solid, 122 mg, 48 % yield. Purified by column chromatography on silica gel using petroleum ether / dichloromethane = 1:1 (v/v) as eluent. ¹H NMR (500 MHz, CDCl₃) δ 9.58 (d, J = 7.5 Hz, 1H), 8.20-8.18 (m, 1H), 7.75-7.71 (m, 3H), 7.66-7.63 (m, 2H), 7.61-7.55 (m, 2H), 7.28 (d, J = 4.5 Hz, 1H), 7.14 (d, J = 7.5 Hz, 1H), 7.06 (d, J = 4.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 184.1, 139.5, 137.4, 131.6, 130.8, 129.1, 128.3, 128.0, 127.1, 125.9, 125.9, 124.7, 124.5, 123.8, 113.7, 102.3. Note: In the ¹³C NMR spectrum of **3q**, theoretically, there should be seventeen peaks. Due to the compact overlaying, it is difficult to specify the overlaying peaks.

Pyrrolo[2,1-a]isoquinolin-3-yl(4-(trifluoromethyl)phenyl)methanone (**3r**). Yellow solid, 110 mg, 32 % yield. M.p. 236-238 °C. Purified by column chromatography on silica gel using petroleum ether / dichloromethane = 1:1 (v/v) as eluent. ¹H NMR (500 MHz, CDCl₃) δ 9.64 (d, *J* = 7.5 Hz, 1H), 8.23-8.21 (m, 1H), 7.96 (d, *J* = 8.0 Hz, 2H), 7.80-7.77 (m, 3H), 7.65-7.59 (m, 2H), 7.29 (d, *J* = 4.0 Hz, 1H), 7.20(d, *J* = 7.5 Hz, 1H),

7.10 (d, J = 5.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 183.9, 144.0, 137.8, 132.9, 132.6, 129.4, 129.3, 128.5, 128.1, 127.2, 126.4, 125.9, 125.4 (q, J = 3.7 Hz), 125.1, 124.7, 124.4, 123.9, 122.9, 114.0, 102.6. **HRMS-ESI** (m/z) calcd. for [C₂₀H₁₃F₃NO]⁺ ([M+H]⁺): 340.0944, found: 340.0951.

Pyrrolo[2,1-*a*]*isoquinolin-3-yl(o-tolyl)methanone* (**3s**). Yellow solid, 177 mg, 62 % yield. M.p. 87-89 °C. Purified by column chromatography on silica gel using petroleum ether / dichloromethane = 1:1 (v/v) as eluent. ¹H NMR (500 MHz, CDCl₃) δ 9.73 (d, *J* = 7.5 Hz, 1H), 8.18 (d, *J* = 8.0 Hz, 1H), 7.75 (d, *J* = 7.0 Hz, 1H), 7.60-7.55 (m, 2H), 7.45 (d, *J* = 7.5 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.31-7.27(m, 2H), 7.15 (d, *J* = 7.5 Hz, 1H), 7.05 (d, *J* = 4.5 Hz, 1H), 7.01 (d, *J* = 4.5 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 187.5, 140.7, 137.3, 136.2, 130.8, 129.6, 129.2, 128.3, 128.2, 127.9, 127.1, 126.5, 126.1, 125.6, 125.2, 124.8, 123.8, 113.7, 102.2, 19.8. HRMS-ESI (m/z) calcd. for [C₂₀H₁₆NO]⁺ ([M+H]⁺): 286.1227, found: 286.1234.

(2-Chlorophenyl)(pyrrolo[2,1-a]isoquinolin-3-yl)methanone (**3t**).⁹ Yellow solid, 116 mg, 38 % yield. Purified by column chromatography on silica gel using petroleum ether / dichloromethane = 1:1 (v/v) as eluent. ¹H NMR (500 MHz, CDCl₃) δ 9.69 (d, J = 7.5 Hz, 1H), 8.18-8.16 (m, 1H), 7.75-7.74 (m, 1H), 7.60-7.56 (m, 2H), 7.50-7.48 (m, 2H), 7.43-7.40 (m, 1H), 7.38-7.35 (m, 1H), 7.17 (d, J = 7.5 Hz, 1H), 7.03-7.00 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 183.3, 140.0, 137.8, 131.5, 130.6, 130.1, 129.3, 129.2, 128.4, 128.0, 127.1, 126.6, 126.5, 126.0, 124.7, 124.6, 123.9, 113.9, 102.7.

(2-Hydroxyphenyl)(pyrrolo[2,1-a]isoquinolin-3-yl)methanone (**3u**). Yellow solid, 161 mg, 56 % yield. M.p. 142-144 °C. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate = 10:1 (v/v) as eluent. ¹H NMR (500 MHz, CDCl₃) δ 11.57 (s, 1H), 9.31 (d, J = 7.5 Hz, 1H), 8.18 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 7.0 Hz, 1H), 7.61-7.55 (m, 2H), 7.49-7.44 (m, 2H), 7.11-7.06 (m, 3H),

6.96 (t, J = 7.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 187.1, 162.0, 137.6, 134.6, 132.1, 129.1, 128.4, 128.0, 127.1, 126.1, 125.8, 124.8, 124.2, 123.8, 121.5, 118.8, 118.2, 113.6, 102.6. **HRMS-ESI** (m/z) calcd. for [C₁₉H₁₄NO₂]⁺ ([M+H]⁺): 288.1020, found: 288.1015.

Pyrrolo[2,1-*a*]*isoquinolin-3-yl(m-tolyl)methanone* (**3v**). Yellow solid, 185 mg, 65 % yield. M.p. 123-125 °C. Purified by column chromatography on silica gel using petroleum ether / dichloromethane = 1:1 (v/v) as eluent. ¹H NMR (500 MHz, CDCl₃) δ 9.61 (d, *J* = 7.0 Hz, 1H), 8.19-8.18 (m, 1H), 7.74-7.72 (m, 1H), 7.66-7.63 (m, 2H), 7.60-7.54 (m, 2H), 7.40-7.37 (m, 2H), 7.32(d, *J* = 4.0 Hz, 1H), 7.12 (d, *J* = 7.5 Hz, 1H), 7.05 (d, *J* = 4.5 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 185.8, 140.8, 138.1, 137.0, 132.0, 129.8, 129.1, 128.1, 127.9, 127.1, 126.5, 126.0, 124.9, 124.9, 123.8, 113.5, 102.0, 21.6. Note: In the ¹³C NMR spectrum of **3v**, theoretically, there should be twenty peaks. Due to the compact overlaying, it is difficult to specify the overlaying peaks. **HRMS-ESI** (m/z) calcd. for [C₂₀H₁₆NO]⁺ ([M+H]⁺): 286.1227, found: 286.1225.

(3-Chlorophenyl)(pyrrolo[2,1-a]isoquinolin-3-yl)methanone (**3w**).⁹ Yellow solid, 128 mg, 42 % yield. Purified by column chromatography on silica gel using petroleum ether / dichloromethane = 1:1 (v/v) as eluent. ¹H NMR (500 MHz, CDCl₃) δ 9.59 (d, *J* = 7.5 Hz, 1H), 8.21-8.19 (m, 1H), 7.82 (t, *J* = 2.0 Hz, 1H), 7.76-7.71 (m, 2H), 7.62-7.56 (m, 2H), 7.54-7.52 (m, 1H), 7.44 (t, *J* = 7.5 Hz, 1H), 7.30 (d, *J* = 5.0 Hz, 1H), 7.16 (d, *J* = 7.5 Hz, 1H), 7.07 (d, *J* = 4.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 183.7, 142.4, 137.6, 134.5, 131.2, 129.6, 129.2, 129.2, 128.4, 128.0, 127.3, 127.1, 126.2, 125.9, 124.7, 124.4, 123.9, 113.8, 102.4.

(3,5-Difluorophenyl)(pyrrolo[2,1-a]isoquinolin-3-yl)methanone (3x). Yellow solid, 104 mg, 34 % yield. M.p. 167-169 °C. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate = 10:1 (v/v) as eluent. ¹H NMR (500 MHz,

CDCl₃) δ 9.56 (d, J = 7.5 Hz, 1H), 8.19 (d, J = 7.0 Hz, 1H), 7.74 (d, J = 7.0 Hz, 1H), 7.62-7.57 (m, 2H), 7.34 (dd, J_1 = 5.5 Hz, J_2 = 23.0 Hz, 3H), 7.16 (d, J = 7.5 Hz, 1H), 7.07 (d, J = 4.5 Hz, 1H), 7.00 (t, J = 9.0 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 182.0, 162.8 (d, J = 251.1 Hz), 162.7 (d, J = 250.2 Hz), 143.7 (t, J = 8.2 Hz), 137.9, 129.3, 128.6, 128.1, 127.1, 126.1, 125.8, 124.6, 123.9, 114.0, 112.2 (dd, J_1 = 6.3 Hz, J_2 = 20.0 Hz), 106.4 (t, J = 25.6 Hz), 102.7. **HRMS-ESI** (m/z) calcd. for [C₁₉H₁₂F₂NO]⁺ ([M+H]⁺): 308.0882, found: 308.0891.

(5-*Chloro-2-hydroxyphenyl*)(*pyrrolo*[2,1-*a*]*isoquinolin-3-yl*)*methanone* (**3y**). Yellow solid, 80 mg, 25 % yield. M.p. 194-196 °C. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate = 10:1 (v/v) as eluent. ¹H NMR (500 MHz, CDCl₃) δ 11.41 (s, 1H), 9.31 (d, *J* = 7.5 Hz, 1H), 8.20 (d, *J* = 7.5 Hz, 1H), 7.87 (d, *J* = 2.5 Hz, 1H), 7.75-7.73 (m, 1H), 7.63-7.58 (m, 2H), 7.46 (d, *J* = 4.5 Hz, 1H), 7.41 (dd, *J*₁ = 2.5 Hz, *J*₂ = 8.5 Hz, 1H), 7.15-7.13 (m, 2H), 7.01 (d, *J* = 9.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 185.5, 160.4, 138.2, 134.2, 131.1, 129.2, 128.7, 128.2, 127.2, 126.3, 125.8, 124.7, 124.0, 123.8, 123.6, 122.3, 119.7, 114.0, 103.2. HRMS-ESI (m/z) calcd. for [C₁₉H₁₃ClNO₂]⁺ ([M+H]⁺): 322.0630, found: 322.0637.

Ethyl 1-bromopyrrolo[2,1-a]isoquinoline-3-carboxylate (4).¹⁰ White solid, 1.46 g, 92 % yield. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate = 10:1 (v/v) as eluent. ¹H NMR (500 MHz, CDCl₃) δ 9.26 (d, J = 7.5 Hz, 1H), 9.22 (d, J = 8.0 Hz, 1H), 7.67 (dd, J_1 = 1.0 Hz, J_2 = 8.0 Hz, 1H), 7.61-7.57 (m, 1H), 7.55-7.52 (m, 2H), 7.01 (d, J = 7.5 Hz, 1H), 4.39 (q, J = 7.0 Hz, 2H), 1.42 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.7, 129.6, 128.5, 127.7, 127.4, 126.9, 125.2, 124.4, 123.7, 123.4, 115.9, 113.5, 90.4, 60.4, 14.6.

Ethyl 1-(4-methoxyphenyl)pyrrolo[2,1-a]isoquinoline-3-carboxylate (**5**). White solid, 248 mg, 72 % yield. M.p. 131-133 °C. Purified by column chromatography on silica gel using petroleum ether as eluent. ¹**H NMR** (500 MHz, CDCl₃) δ 9.21 (d, J = 7.5 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.35-7.30 (m, 4H), 7.18-7.14 (m, 1H), 6.94-6.91 (m, 3H), 4.31 (q, J = 7.0 Hz, 2H), 3.82 (s, 3H), 1.32 (t, J = 7.0 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 161.6, 159.1, 131.2, 130.6, 129.4, 128.6, 127.1, 127.0, 125.9, 124.9, 123.7, 122.7, 119.9, 115.4, 114.2, 112.9, 60.1, 55.4, 14.6. Note: In the ¹³**C NMR** spectrum of **5**, theoretically, there should be twenty peaks. Due to the compact overlaying, it is difficult to specify the overlaying peaks. **HRMS-ESI** (m/z) calcd. for [C₂₂H₂₀NO₃]⁺ ([M+H]⁺): 346.1438, found: 346.1433.

Ethyl 1-(fluorosulfonyl)pyrrolo[2,1-a]isoquinoline-3-carboxylate (6).¹ White solid, 25 mg, 8 % yield. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate = 10:1 (v/v) as eluent. ¹H NMR (500 MHz, CDCl₃) δ 9.46 (d, J = 7.5 Hz, 1H), 8.93 (d, J = 8.0 Hz, 1H), 8.08 (s, 1H), 7.82 (dd, J_1 = 1.0 Hz, J_2 = 7.5 Hz, 1H), 7.77-7.70 (m, 2H), 7.36 (d, J = 7.5 Hz, 1H), 4.44 (q, J = 7.5 Hz, 2H), 1.44 (t, J = 7.0 Hz, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ 65.52 (s, 1F).

5. References

(1) Xiong, H.; Wu, J.; Qin, H.-L. [3 + 2] Cycloaddition for the Assembly of Indolizine-Based Heterocyclic Sulfonyl Fluorides. *Org. Chem. Front.* **2023**, 10, 342-347.

(2) Liu, M.; Tang, W.; Qin, H.-L. Discovery of (*E*)-2-Methoxyethene-1-sulfonyl Fluoride for the Construction of Enaminyl Sulfonyl Fluoride. *J. Org. Chem.* **2023**, 88, 1909-1917.

(3) Brienne, M. J.; Varech, D.; Leclercq, M.; Jacques, J.; Radembino, N.; Dessalles, C.; Mahuzier, G.; Gueyouche, C.; Bories, C. New Antifilarial Agents. 1. Epoxy Sulfonamides and Ethynesulfonamides. *J. Med. Chem.* **1987**, 30, 2232-2239.

(4) Dong, J.; Krasnova, L.; Finn, M. G.; Sharpless, K. B. Sulfur (VI) Fluoride Exchange (SuFEx): Another Good Reaction for Click Chemistry. *Angew. Chem., Int. Ed.* **2014**, 53, 9430-9448.

(5) Zhang, Z.-W.; Wang, S.-M.; Fang, W.-Y.; Lekkala, R.; Qin, H.-L. Protocol for Stereoselective Construction of Highly Functionalized Dienyl Sulfonyl Fluoride Warheads. *J. Org. Chem.* **2020**, 85, 13721-13734.

(6) Liu, Y.; Zhang, Y.; Shen, Y.-M.; Hu, H.-W.; Xu, J.-H. Regioselective Synthesis of 3-Acylindolizines and Benzo-Analogues *via* 1,3-Dipolar Cycloadditions of *N*-ylides with Maleic Anhydride. *Org. Biomol. Chem.* **2010**, 8, 2449-2456.

(7) Zhang, Y.; Wang, W.; Sun, J.; Liu, Y. TEMPO-Catalyzed Decarboxylation Reactions for The Synthesis of 1,2-Unsubstituted Indolizines. *J Heterocyclic Chem.* **2020**, 57, 210-217.

(8) Lu, M.; Shi, F.; Ji, M.; Kan, Y.; Hu, H. Palladium Catalyzed C-H Olefination of Indolizines at the 1-Position with Molecular Oxygen as the Terminal Oxidant. *Asian J. Org. Chem.* **2019**, 8, 1555-1560.

(9) An, J.; Yang, Q.-Q.; Wang, Q.; Xiao, W.-J. Direct Synthesis of Pyrrolo[2,1*a*]isoquinolines by 1,3-Dipolar Cycloaddition of Stabilized Isoquinolinium *N*-ylides with Vinyl Sulfonium Salts. *Tetrahedron Letters*. **2013**, 54, 3834-3837.

(10) Wang, F.; Shen, Y.; Hu, H.; Wang, X.; Wu, H.; Liu, Y. Copper(II)-Catalyzed Indolizines Formation Followed by Dehydrogenative Functionalization Cascade to Synthesize 1-Bromoindolizines. *J. Org. Chem.* **2014**, 79, 9556-9566.

6. Mechanistic experiments and proposal

6.1 Control Experiments

Figure S1. Experiments on mechanistic studies

No desired product **3a** was observed in the absence of oxidant (Figure S1a). This result suggested that oxidant was necessary for the cycloaddition reaction. Further control variable experiments indicated that this reaction underwent a synergistic oxidation process. We smoothly isolated by-product **6** in 8% yield, when the standard conditions was used (Figure S1b). To further gain insight into the reaction mechanism, in particular, the details on desufonylation mechanism, the reaction mixtures were detected by ¹⁹F NMR analysis at different time periods (Figure S3-S9).

6.2 Proposed mechanism

Figure S2. Proposed mechanism

A plausible mechanism of this reaction was proposed based on previous literatures and our investigation as postulated in Scheme 3 of manuscript. The 51 ppm peak and 55 ppm peak in ¹⁹F NMR indicated the signals of aliphatic sulfonyl fluoride there (Figure S4-S6).The two peaks were very likely correspond to intermediate **A** and intermediate **B**. Moreover, we extrapolated that sulfonyl fluoride group was eliminated as a whole in the reaction due to the 60 ppm peaks in ¹⁹F NMR.

Figure S3. ¹⁹F NMR of the original reaction mixtures

Figure S4. ¹⁹F NMR of the reaction mixtures at five minutes

Figure S5. ¹⁹F NMR of the reaction mixtures at fifteen minutes

Figure S6. ¹⁹F NMR of the reaction mixtures at thirty minutes

Figure S7. ¹⁹F NMR of the reaction mixtures at an hour

Figure S8. ¹⁹F NMR of the reaction mixtures at two hours

Figure S9. ¹⁹F NMR of the reaction mixtures at three hours

S57

S67

-2 PPM

