Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

GALLIC ACID-BASED DENDRIMERS WITH THIACALIX[4]ARENE CORE: SYNTHESIS, AGGREGATION AND USE FOR Pd NP's STABILIZATION

Aigul M. Fatykhova 1, Elsa D. Sultanova 1, Vladimir A. Burilov 1, Bulat Kh. Gafiatullin 1, Angelina A. Fedoseeva 1, Tatyana A. Veshta 1, Marat A. Ziganshin 1, Sufia A. Ziganshina 1, Vladimir G. Evtugin 2, Daut R. Islamov 3, Konstantin S. Usachev 3, Svetlana E. Solovieva,4, Igor S. Antipin 1

1 Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia

2 Interdisciplinary Center for Analytical Microscopy, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia

3 Laboratory for Structural Studies of Biomacromolecules, FRC Kazan Scientific Center of RAS, 2/31 Lobachevskogo Str., 420111 Kazan, Russia

4 Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia

VBBC4-13	c								P						
									loroforn						
	$< \frac{157.4}{157.1}$	$\underset{145.7}{145.7}$	128.7	128.5 128.4 128.2				80.5	77.2 Ch 74.5 69.0	68.0 68.0	58.6	34.4 31.6 31.6	31.0	19.1 14.1	
				1					1						
	1														
44. 5-466 444/84	ay Alaysan				4////infa/41/47-44	i ya kata kata kata kata kata kata kata k	india fatina ada	alaafaa aa ahada ahada aha	ululpay.	is Volgenstram	defferences and free second	an a	veritien friedred	humhna	, statistica and the second states of
.70	160	150	140 1	.30 1	20 1	10 1	00	90 8 ppm	30 7	70 0	50 50	40	30 2	20 1	.0 (

Figure S1. NMR ¹H (a), ¹³C (b), and HRESI MS (c), FT IR (d) spectra of *compound (4)*.

Figure S2. NMR ¹H (a), ¹³C (b), and HRESI MS (c), FT IR (d) spectra of *compound* (5).

Figure S3. NMR ¹H (a), ¹³C (b), and HRESI MS (c), FT IR (d) spectra of *compound* (6).

Figure S4. NMR ¹H (a), ¹³C (b), and HRESI MS (c), FT IR (d) spectra of *compound (12)*

(b)

Figure S5. NMR ¹H (a), ¹³C (b), and HRESI MS (c), FT IR (d) spectra of *compound (13)*

Figure S6. NMR ¹H (a), ¹³C (b), and HRESI MS (c), FT IR (d) spectra of *compound (14)*

Figure S7. NMR ¹H (a), ¹³C (b), and HRESI MS (c), FT IR (d) spectra of *compound (15)*

(b)

Figure S8. NMR ¹H (a), ¹³C (b), and HRESI MS (c), FT IR (d) spectra of *compound (16)*

Figure S9. NMR ¹H (a), ¹³C (b), and HRESI MS (c), FT IR (d) spectra of *compound (17)*

Figure S10. NMR ¹H of *compound* 10*a* (a) and of *mixture* 10*a*, *b* (b) (DMSO_{d6}, 400 MHz, 25 °C)

Figure S11 AFM evaluation of the dendrimers: A) **15**, B) **16**, C) **17**, where (a) AFM images and (b) cross-section view of dendrimers showing a diameters and heights; C(macrocycles) = 0.1 mM in 5% THF – water

Figure S12 UV-Vis spectra of $PdCl_4^{2-}$, dendrimer and double $PdCl_4^{2-}$ -dendrimer systems for A) **15**, B) **16** and C) **17**, where (a) $PdCl_4^{2-}$ (0.2 mM), (b) dendrimer (0.1 mM) and dendrimer (0.1 mM) in the presence of different amounts of palladium after reduction during 1 hour (0.1 mM) (c) 0.05mM, (d) 0.1 mM, (e) 0.15 mM, (f) 0.2 mM; water with 5% THF, $1 = 1 \text{ cm}^{-1}$.

Figure S13 Plots of $\ln(C_t/C_0)$ vs time in the presence of (a) 0.5Pd&15, (b) 1.5Pd&15, (c) 2Pd&15; (d) 0.5Pd&17; (e) 1Pd&17; (f) 1.5Pd&17 (g) 0.5Pd&16; (h) 1Pd&16 (i) 1.5Pd&16 (j) Pd⁰; (C(*p*-nitrophenol) = 0.1 mM, C(NaBH₄) = 5 mM, n(Pd) in metal-dendrimer = 5 nanomole, 5 % THF - water, 20 °C, l = 1 cm.