Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Figure S1 SQDs size distribution profile and zeta potential

Figure S2. Emission changes of SQDs with an interval of 72 h for 36 days, after 9 months of preservation at 4 °C.

Figure S3. (a) Temperature and (b) pH influence on SQDs emission property.

Material	Linear Rang(µM)	LOD(µM)	Ref.
B, N-CDs	0.5-60,60-200	0.2	1
CDs-BC	0.3-6.5,6.5-30	0.11	2
Hollow nanospheres	0-34.9	0.26	3
Au NCs	0.1-100	0.09	4
Au NCs	1-50	0.21	5
β-CD-CdTe QDs	20-100	0.3	6
N-CDs	0.25-7.5	0.05	7
N-CDs	0-250	0.4	8
Cr-CDs	0.8-150	0.27	9
B,N CDs	-	0.17	10
SQDs	0.2-30	0.07	11
SQDs	0.12-50	0.046	This work

Table S1. Comparison of SQDs LOD against 4-NP with the reported literature.

Material	Linear range(µM)	LOD(µM)	Ref.
Cu,I pellet	0-800	2.30	12
Curcumin	0.15-9.9	0.079	13
Si NPs	0.1-500	0.029	14
N-CDs	0.001-1	0.077	15
Poly(propyleneimine-Au NPs)	0.61-625	0.45	16
ZnCO ₂ O ₄ -GCE	1-4000	0.3	17
Polymethy red film	0.1-40	0.15	18
BaO nanorods	1.5-9	0.5	19
B-cyclodextrin	5-400	0.3	20
SQDs	0.12-50	0.171	This work

 Table S2. Comparison of SQDs LOD against 4-NP with the reported literature.

Figure S4. SQDs Stern-Volmer plots in the presence of nitrophenols: (a) 4-NP (b) 2-NP.

Figure S5. Influence of pH on emission and quenching property of SQDs in the presence of nitrophenols.

Figure S6. Zeta potential of SQDs in the presence of 4-NP(a) and 2-NP (b)

Figure S7. FT-IR spectra of SQDs in the presence of (a) 4-NP and (b) 2-NP

Figure S8. TRPL titration of SQDs in the presence of (a) 4-NP (25-250 μ M) and (b) 2-NP (50-500 μ M).

Table S3. Faster (τ_1 and τ_2), slower (τ_3) and average (τ_{avg}) decay values of SQDs in 4-NP solution

4-NP	$\tau_1(ns)$	$\tau_2(ns)$	$\tau_3(ns)$	τ_{avg} (ns)
SQDs	0.78	2.7	10.3	9.64
SQDs+25 μM	0.85	3.6	10.4	10.78
$SQDs{+}50\;\mu M$	0.82	3.2	10.2	10.73

SQDs+75 μM	0.14	4.5	10.3	9.80
$SQDs{+}100\;\mu M$	0.84	3.0	10.0	9.75
SQDs+125 μM	0.89	3.8	10.1	10.30
$SQDs{+}150\;\mu M$	0.92	2.4	9.8	9.90
SQDs+175 μM	0.25	3.7	10.0	9.59
SQDs+200 μM	0.59	2.9	9.88	9.57
SQDs+225 μM	0.12	2.1	97.9	9.82
SQDs+250 µM	0.14	1.5	9.70	9.78

Table S4. Faster (τ_1 and τ_2), slower (τ_3) and average (τ_{avg}) decay values of SQDs in 2-NP solution

2-NP	$\tau_1(ns)$	$\tau_2(ns)$	$\tau_3(ns)$	τ_{avg} (ns)
SQDs	0.78	2.7	10.3	9.64
$SQDs{+}50\;\mu M$	0.96	4.6	10.3	9.84
$SQDs{+}100\;\mu M$	0.36	3.3	10.1	9.75
$SQDs{+}150\;\mu M$	0.143	3.5	10.2	9.72
$SQDs{+}200\;\mu M$	0.84	3.2	10.0	9.75
$SQDs{+}250\;\mu M$	0.93	4.0	10.1	9.67
$SQDs{+}300\;\mu M$	0.44	3.8	10.0	9.64
$SQDs{+}350\;\mu M$	0.24	2.9	98.7	9.57
SQDs+400 μM	0.36	3.6	98.0	9.38
$SQDs{+}450\;\mu M$	0.15	4.6	98.3	9.33
$SQDs{+}500\;\mu M$	0.11	3.8	98.0	9.37

Figure S9. Influence of nitrophenols on SQDs PLQY (a) SQDs+4-NP (b) SQDs+2-NP.

- N. Xiao, S. G. Liu, S. Mo, N. Li, Y. J. Ju, Y. Ling, N. B. Li and H. Q. Luo, *Talanta*, 2018, 184, 184–192.
- 2 S. Zhang, D. Zhang, Y. Ding, J. Hua, B. Tang, X. Ji, Q. Zhang, Y. Wei, K. Qin and B. Li, *Analyst*, 2019, **144**, 5497–5503.
- S. Jiang, S. Liu, L. Meng, Q. Qi, L. Wang, B. Xu, J. Liu and W. Tian, *Sci. China Chem.*,
 2020, 63, 497–503.
- 4 Y. Li, Q. L. Wen, A. Y. Liu, Y. Long, P. Liu, J. Ling, Z. T. Ding and Q. E. Cao, *Microchim. Acta*, 2020, **187**, 1–9.
- 5 H. Yang, F. Lu, Y. Sun, Z. Yuan and C. Lu, *Anal. Chem.*, 2018, **90**, 12846–12853.
- 6 Z. Zhang, J. Zhou, Y. Liu, J. Tang and W. Tang, *Nanoscale*, 2015, 7, 19540–19546.
- 7 S. K. Tammina and Y. Yang, J. Photochem. Photobiol. A Chem., , DOI:10.1016/j.jphotochem.2019.112134.
- 8 D. Das and R. K. Dutta, 2023, 06, 47.

- 9 C. Li, Y. Zheng, H. Ding, H. Jiang and X. Wang, *Microchim. Acta*, 2019, 186, 1–8.
- 10 S. Tummala, C. H. Lee and Y. P. Ho, *Nanotechnology*, 2021, **32**, 265502.
- X. Peng, Y. Wang, Z. Luo, B. Zhang, X. Mei and X. Yang, *Microchem. J.*, 2021, 170, 106735.
- G. N. Liu, R. D. Xu, R. Y. Zhao, Y. Sun, Q. B. Bo, Z. Y. Duan, Y. H. Li, Y. Y. Wang, Q.
 Wu and C. Li, ACS Sustain. Chem. Eng., 2019, 7, 18863–18873.
- 13 Y. Wang, K. M. Wang, G. L. Shen and R. Q. Yu, *Talanta*, 1997, 44, 1319–1327.
- Y. Han, Y. Chen, J. Feng, M. Na, J. Liu, Y. Ma, S. Ma and X. Chen, *Talanta*, 2019, 194, 822–829.
- 15 Y. Qu, G. Ren, L. Yu, B. Zhu, F. Chai and L. Chen, J. Lumin., 2019, 207, 589–596.
- T. Ndlovu, O. A. Arotiba, R. W. Krause and B. B. Mamba, *Int. J. Electrochem. Sci.*, 2010, 5, 1179–1186.
- J. Zhang, S. Cui, Y. Ding, X. Yang, K. Guo and J. T. Zhao, *Biosens. Bioelectron.*, 2018, 112, 177–185.
- 18 W. A. Adeosun, A. M. Asiri and H. M. Marwani, *Synth. Met.*, 2020, **261**, 116321.
- M. M. Alam, A. M. Asiri and M. M. Rahman, *Chem. An Asian J.*, 2021, 16, 1475–1485.
- 20 J. Liu, Y. Chen, Y. Guo, F. Yang and F. Cheng, *J. Nanomater.*, , DOI:10.1155/2013/632809.