Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Electronic Supplementary Information (ESI)

Tuning the fluorescence sensing for Fe³⁺ ions by using different dipyridyl linkers in

pillar-layered metal-organic frameworks

Yan-E Liu‡, Ye Zhou‡, Xiao-Yu Li, Yao Jun, Qiu-Xia Li, Quan-Qing Xu, Rong-Rong Zhu* and Ai-Xin Zhu*

Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.

‡ These authors contributed equally to this paper.

* Corresponding author.

E-mail: chemzrr1993@163.com (Rong-Rong Zhu); zaxchem@126.com (Ai-Xin Zhu) Tel: +86 0871 65941088

Table of Contents

Fig. S1 PXRD patterns of PL-1, PL-2, and PL-31
Fig. S2 Solid-state excitation and emission spectra of ligands and MOFs1
Fig. S3 The comparison of the luminescence intensities of PL-1, PL-2, and PL-3 dispersed in
EtOH upon the addition of 400 μL of various anions of Fe^{3+} solutions (10 mM) 2
Fig. S4 PXRD patterns of PL-1, PL-2, and PL-3 after 5 cycles for sensing Fe ³⁺ ions2
Fig. S5 PXRD patterns of PL-1, PL-2, and PL-3 after being soaked in different metal solutions
Fig. S6 Photographs of PL-1, PL-2, PL-3 and Fe ³⁺ incorporated PL-1, PL-2, PL-3
Fig. S7 XPS survey and O1s XPS spectra of PL-1, PL-2, and PL-3 before and after being
immersed in EtOH solutions of Fe(NO ₃) ₃ 3
Fig. S8 S2p and N1s XPS spectra of PL-1, PL-2, and PL-3 before and after being immersed in
EtOH solutions of Fe(NO ₃) ₃ 4
Fig. S9 Excitation spectra of PL-1, PL-2, and PL-3 dispersed in EtOH and UV-vis absorption
spectrum of Fe ³⁺ ions in EtOH 4
Fig. S10 Polts of adsorption capacities of Fe ³⁺ ions vs. the adsorption time for PL-1, PL-2,
and PL-3
Fig. S11 Lengths of pillar for PL-1, PL-2, and PL-3
Table S1 Summary of the values of K_{sv} for the fluorescent MOFs used for sensing Fe ³⁺ ions
Table S2 List of the structure parameters and K _{sv} for the pillar-layered MOFs 7
References

Fig. S1 PXRD patterns of PL-1, PL-2, and PL-3.

Fig. S2 Solid-state excitation (a, c) and emission (b, d) spectra of ligands and MOFs.

Fig. S3 The comparison of the quenching efficiency of **PL-1**, **PL-2**, and **PL-3** dispersed in EtOH upon the addition of 400 μ L of various anions of Fe³⁺ solutions (10 mM).

Fig. S4 PXRD patterns of PL-1, PL-2, and PL-3 after 5 cycles for sensing Fe³⁺ ions.

Fig. S5 PXRD patterns of PL-1 (a), PL-2 (b), and PL-3 (c) after being soaked in different metal solutions.

PL-1-Fe³⁺ PL-2-Fe³⁺ PL-3-Fe³⁺

Fig. S6 Photographs of PL-1, PL-2, PL-3 and Fe³⁺ incorporated PL-1, PL-2, PL-3.

Fig. S7 XPS survey (a, b, c) and O1s XPS spectra (d, e, f) of **PL-1**, **PL-2**, and **PL-3** before and after being immersed in EtOH solutions of $Fe(NO_3)_3$.

Fig. S8 S2p (a, b, c) and N1s (d, e, f) XPS spectra of **PL-1**, **PL-2**, and **PL-3** before and after being immersed in EtOH solutions of Fe(NO₃)₃.

Fig. S9 Excitation spectra of **PL-1**, **PL-2**, and **PL-3** dispersed in EtOH and UV-vis absorption spectrum of Fe³⁺ ions in EtOH.

Fig. S10 Polts of adsorption capacities of Fe³⁺ ions *vs.* the adsorption time for **PL-1**, **PL-2**, and **PL-3**. The saturated adsorption capacity for Fe³⁺ ions is comparable for **PL-1**, **PL-2** and **PL-3** with *ca.* 376, 374, and 402 mg/mol at 4 h, respectively. The adsorption rate (from the slope for this curve) below 30 min obviously follows the order: **PL-3** > **PL-2** > **PL-1**.

Fig. S11 Lengths of pillar for PL-1 (a), PL-2 (b), and PL-3 (c).

Fluorescent MOF materials	Media	K _{SV} (M ⁻¹)	Ref.
{[Cd2(bptc)(2,2'-bipy)2(H2O)2]}n	H ₂ O	8.61 x 10 ³	S1
{[Cd2(bptc)(phen)2]·4H2O}n	H ₂ O	3.07 x 10 ³	S1
{[Cd2(bptc)(4,4'-bipy)(H2O)2]·4H2O}n	H ₂ O	6.21 x 10 ³	S1
[Zn₂(trz)₂(btdb)]·4DMF	H ₂ O	2.4 x 10 ²	S2
[Cd _{1.5} (L) ₂ (bpy)(NO ₃)]	H ₂ O	1.13 x 10 ⁴	S3
[Eu(BCB)(DMF)]·(DMF)1.5(H2O)2	H ₂ O	2.35 x 10 ⁴	S4
[Zn(DHT)(BPP)] _n	H ₂ O	1.77 x 10 ⁴	S5
[Cd1.5(L)2(bpy)(NO3)]	H ₂ O	1.91 x 10 ⁴	S6
[Eu2(L)3(DMF)2(H2O)4]·2DMF	H ₂ O	8.31 x 10 ³	S7
[Tb ₂ (L) ₃ (DMF) ₂ (H ₂ O) ₄]·2DMF	H ₂ O	5.63 x 10 ³	S7
[Gd₂(L)₃(DMF)₂(H₂O)₄]·2DMF	H ₂ O	2.86 x 10 ⁴	S7
[Y ₂ (L) ₃ (DMF) ₂ (H ₂ O) ₄]·2DMF	H ₂ O	1.50×10^4	S7
[Co6(oba)₄(Hatz)(Atz)(H2O)2(µ3-OH)2(µ2-OH)]·H2O	H ₂ O	9.61 x 10 ⁴	S8
UiO-67	H ₂ O	5.981 x 10 ⁴	S9
UiO-67@N	H ₂ O	5.252 x 10 ⁴	S9
UiO-67@NN	H ₂ O	1.646 x 10 ⁴	S9
{[Zn₄(tpta)₂(OH)₂(bib)₄]·H₂O}n	H ₂ O	7.8 x 10 ³	S10
JLUMOF201-Y	H ₂ O	7.67 x 10 ³	S11
JLUMOF201-Tb	H ₂ O	8.38 x 10 ³	S11
{[H ₂ N(Me) ₂] ₂ [Zn ₅ (L) ₂ (OH) ₂]·3DMF·4H ₂ O} _n	H2O	9.799 x 10 ⁴	S12
[Zn ₂ (trz) ₂ (btdb)]·4DMF	MeOH	3.3 x 10 ³	S2
[Eu2(TDC)3(CH3OH)2(CH3OH)]	MeOH	3.42 × 10 ³	S13
[Tb2(TDC)3(CH3OH)2(CH3OH)]	MeOH	3.04×10^{4}	S13
[Cd2(L1)(tdc)2(H2O)]n	EtOH	3.01 x 10 ³	S14
[Cd(L2) _{0.5} (tdc)] _n	EtOH	4.22 x 10 ³	S14
Tb ³⁺ @Zn-MOF	EtOH	3.26×10^{4}	S15
CH ₃ -dpb]2[Mg ₃ (1,4-NDC) ₄ (µ-H ₂ O) ₂ (CH ₃ OH)(H ₂ O)]·1.5H ₂ O	EtOH	1.6×10^{4}	S16
[La(TPT)(DMSO)2]·H2O	EtOH	1.36×10 ⁴	\$17
EuL₃	EtOH	4.1×10 ³	S18
[Eu2K2(dcppa)2(H2O)6]·5H2O	EtOH	4.30 x 10 ⁴	S19
[Eu₃(FDA)₄(DMSO)₂(NO₃)(H₂O)₂]n	EtOH	3.3 x 10 ⁴	S20
PL-1	EtOH	1.58 x 10 ⁴	This work
PL-2	EtOH	1.72 x 10 ⁴	This work
PL-3	EtOH	2.47 x 10 ⁴	This work

Table S1 Summary of the values of K_{sv} for the fluorescent MOFs used for sensing Fe³⁺ ions.

Table S2 List of the structure parameters and K_{sv} for the pillar-layered MOFs.

MOFs	Dipyridyl ligand	Length of the pillar (Å)	Pore volume (%)	<i>Ksv</i> (M⁻¹)
PL-1	bpe	16.2235(8)	45.5	1.60 x 10 ⁴
PL-2	dpe	16.3357(7)	45.7	1.73 x 10 ⁴
PL-3	bpa	16.5907(10)	46.0	2.52 x 10 ⁴

References

- S1. Y. Lin, X. Zhang, W. Chen, W. Shi and P. Cheng, Inorg. Chem., 2017, 56, 11768-11778.
- 52. X.-T. Hu, Z. Yin, X.-P. Luo, C.-H. Shen and M.-H. Zeng, Inorg. Chem. Commun., 2021, 129, 108664.
- 53. M. Singh, S. Senthilkumar, S. Rajput and S. Neogi, Inorg. Chem., 2020, 59, 3012-3025.
- S4. M. Y. Zhang, F. Y. Yi, L. J. Liu, G. P. Yan, H. Liu and J. F. Guo, *Dalton Trans.*, 2021, 50, 15593-15601.
- 55. S. T. Wang, X. Zheng, S. H. Zhang, G. Z. Li and Y. Xiao, CrystEngComm, 2021, 23, 4059-4068.
- S6. M. Singh, G. Kumar and S. Neogi, Front. Chem., 2021, 9, 651866.
- 57. L. J. Zhao, B. Li and G. P. Yong, CrystEngComm, 2023, 25, 2813-2823.
- W. S. Zhang, G. Q. Wang, Y. X. Wang, Y. L. Yang, X. Bai, H. Cui, Y. Lu and S. X. Liu, *Dalton Trans.*, 2023, 52, 4407-4414.
- S. Fajal, W. Mandal, D. Majumder, M. M. Shirolkar, Y. D. More and S. K. Ghosh, *Chem. Eur. J.*, 2022, 28, e202104175.
- S10. D. Qi, X. Si, L. Guo, Z. Yan, C. Shao and L. Yang, Colloid and Surfaces A, 2022, 649, 129477.
- S11. Q. Hu, T. Xu, J. Gu, L. Zhang and Y. Liu, CrystEngComm, 2022, 24, 2759-2766.
- S12. Y.-T. Yan, Y.-L. Wu, L.-N. Zheng, W. Cai, P.-F. Tang, W.-P. Wu, W.-Y. Zhang and Y.-Y. Wang, New J. Chem.,

2022, 46, 4292–4299.

\$13. K. Xu, F. Wang, S. Huang, Z. Yu, J. Zhang, J. Yu, H. Gao, Y. Fu, X Li, Y. Zhao, RSC Adv., 2016, 6, 91741-91747.

S14. Y. Q. Su, L. Fu and G. H. Cui, *Dalton Trans.*, 2021, 50, 15743-15753.

- S15. Y.-J. Liang, J. Yao, M. Deng, Y.-E. Liu, Q.-Q. Xu, Q.-X. Li, B. Jing, A.-X. Zhu and B. Huang, *CrystEngComm*, 2021, 23, 7348-7357.
- S16. Z. F. Wu, L. K. Gong and X. Y. Huang, Inorg. Chem., 2017, 56, 7397-7403.
- \$17. C. Zhang, Y. Yan, Q. Pan, L. Sun, H. He, Y. Liu, Z. Liang J. Li, Dalton Trans., 2015, 44, 13340 -13346.
- S18. M. Zheng, H. Tan, Z. Xie, L. Zhang, X. Jing Z. Sun, ACS Appl. Mater. Interfaces. 2013, 5, 1078-1083.
- S19. H. Zhang, R. Fan, W. Chen, J. Fan, Y. Dong, Y. Song, X. Du, P. Wang, Y. Yang, Cryst. Growth Des. 2016, 16, 5429-5440.
- 520. H. Zhang, G.-Y. Liu, X.-H. Diao, Y. Muhammad, C. Chen, Y.-Y. Gao, H. Wang, C.-S. Qi, W. Li, J. Solid State Chem., 2023, 324, 124114.