Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Electronic supplementary information

for

Benzothiazole-coupled NS₄-donor macrocycle and its complexation-based dual-channel sensing for Hg²⁺: the influence of anions and structure-function relationship

Yelim Lee, Joon Rae Kim, Eunji Lee*

Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, South Korea

Experimental

Synthesis of 2. The compound 2 was prepared via the modified procedure of the reported method in the literature^{S1}. To a stirred solution of POCl₃ (5.14 mL, 55.2 mmol) and DMF (1.86 mL, 22.1 mmol) in a round-bottom flask, was added *N*-Phenyldiethanolamine (2.00 g, 11.0 mmol). The mixture was stirred at 80 °C for 12 h and then the resulting solution was poured into ice water. The resulting pale-brown precipitate was collected by filtration, washed with water and diethyl ether, and dried in a vacuum oven. Yield: 75 %. ¹H NMR (400 MHz, CDCl₃): δ 9.79 (*s*, 1 H, CHO), 7.78 (*d*, 2 H, Ar), 6.75 (*d*, 2 H, Ar), 3.85 (*t*, 4 H, NCH₂CH₂Cl), 3.67 (*t*, 4 H, NCH₂CH₂Cl). Mass spectrum: *m*/*z* = 246.08 [C₁₁H₁₄Cl₂NO]⁺ (calcd 246.05).

Fig. S1 ¹H-NMR spectra of **2** in $CDCl_3$.

Synthesis of 3. The compound **3** was prepared via the modified procedure of the reported method in the literature^{S2}. Thiourea (1.09 g, 14.3 mmol) was added to a solution of *m*-xylylenebis(1-chloro-3-thiapropane)^{S2} (1.04 g, 3.53 mmol) in ethanol (100 mL). The reaction mixture was refluxed for 3 h, allowed to cool to room temperature, and then evaporated. 100 mL of saturated NaHCO₃ was added and then the mixture was refluxed a further 3 h. After cooling to room temperature, the mixture was partitioned between water and chloroform. The combined organic phases were dried with anhydrous sodium sulfate and then evaporated to dryness. Crude product a yellow oil was used for the next reaction after drying without purification.

Fig. S2 (a) 1 H- and (b) 13 C-NMR spectra of 4 in CDCl₃.

Fig. S3 (a) 1 H- and (b) 13 C-NMR spectra of L in CDCl₃

Fig. S4 Linear fitting for the $[Hg^{2+}]$ vs A from the UV-vis spectra of L in EtOH/DMSO (v/v, 9:1).

Fig. S5 (a) UV-vis spectra of L $(2.0 \times 10^{-5} \text{ M})$ with mercury(II) perchlorate (10-25 uM) in 95%EtOH/DMSO (v/v, 9:1). (b) Linear fitting for the [Hg²⁺] vs A from the UV-vis spectra of L in the presence of Hg(ClO₄)₂.

Fig. S6 Curve-fitting for UV-vis titration data to determine the stability constants for the complexations of L with $Hg(ClO_4)_2$ using HyperSpec software by employing the multiple binding model including 1:2, 1:1 and 2:1 (metal-to-ligand) ratios: (a) species distribution diagram and (b) HyperSpec output (\circ : experimental values, solid line: theoretical fit).

Fig. S7 Comparative NMR spectra (aromatic region) of L in the presence of $Hg(ClO_4)_2$ (0-2.0 equiv) in CDCl₃/DMSO- d_6 (v/v, 5:2).

X-ray crystallographic analysis

All data were collected on a Bruker D8 Venture PHOTON III M14 diffractometer equipped with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å) generated by a rotating anode. Data collection, data reduction, and semiempirical absorption correction were carried out using the software package APEX2.^{S3} All of the calculations for the structure determination were carried out using the SHELXTL package.^{S4} In all cases, all nonhydrogen atoms were refined anisotropically and all hydrogen atoms were placed in idealised positions and refined isotropically in a riding manner along with their respective parent atoms. Relevant crystal data collection and refinement data for the crystal structures are summarised in Table S1. CCDC 2281697 (L) and 2281698 (HgI₂ complex) contain supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

	L	$[Hg_2(L)I_4]$	
Formula	$C_{29}H_{32}N_2S_5$	$C_{29}H_{32}Hg_2I_4N_2S_5$	
Formula weight	568.86	1477.64	
Temperature	223(2)	223(2)	
Crystal system	Triclinic	Monoclinic	
Space group	<i>P</i> -1	<i>P</i> 2 ₁ /n	
Ζ	2	4	
<i>a</i> (Å)	9.831(5)	8.6176(2)	
<i>b</i> (Å)	10.536(6)	19.1568(4)	
<i>c</i> (Å)	14.817(8)	22.9808(4)	
<i>α</i> (°)	90.682(17)	90	
eta(°)	91.831(15)	94.7210(10)	
γ(°)	110.896(15)	90	
$V(Å^3)$	1432.6(13)	3780.93(14)	
$D_{ m calc}$ (g/cm ³)	1.319	2.596	
$2\theta_{\max}(\circ)$	52.00	52.00	
Goodness-of-fit on F ²	1.032	1.038	
$R_1, wR_2 [I > 2\sigma(I)]$	0.0671, 0.1895	0.0310, 0.0677	
R_1 , wR_2 [all data]	0.1161, 0.2291	0.0406, 0.0717	
No. of reflection used $[>2\sigma(I)]$	7046 [$R_{\rm int} = 0.0643$]	7435 [$R_{\rm int} = 0.0431$]	
Refinement	full-matrix	full-matrix	

Table S1. Crystal and Experimental Data and Refinement Parameters

			· -
Hg1-I1	2.643(1)	Hg2-I3	2.610(1)
Hg1-I2	2.620(1)	Hg2-I4	2.642(1)
Hg1-S1	2.813(2)	Hg2-S3	2.886(2)
Hg1-S2	2.792(2)	Hg2-S4	2.861(2)
I1-Hg1-I2	144.3(2)	I3-Hg2-I4	154.8(2)
I2-Hg1-S2	106.4(1)	I3-Hg2-S4	98.1(1)
I1-Hg1-S2	102.5(1)	I4-Hg2-S4	101.4(1)
I2-Hg1-S1	103.5(1)	I3-Hg2-S3	112.7(1)
I1-Hg1-S1	101.8(1)	I4-Hg2-S3	87.6(1)
S1-Hg1-S2	79.7(1)	S3-Hg2-S4	76.0(1)

Table S2 Selected bond lengths (Å) and bond angles (°) for $[Hg_2(L)I_4]$

References

- S1. J. Massin, W. Dayoub, J.-C. Mulatier, C. Aronica, Y. Bretonniere and C. Andraud, *Chem. Mater.*, 2011, 23, 862–873.
- S2. J. Buter, R. M. Kellogg and F. V. Bolhuisb, J. Chem. Soc., Chem. Commun., 1990, 282-284.
- S3. Bruker, APEX2 Version 2009.1-0 Data collection and Processing Software, Bruker AXS Inc., Madison, Wisconsin, U.S.A., 2008.
- S4. Bruker, SHELXTL-PC Version 6.22 Program for Solution and Refinement of Crystal Structures, Bruker AXS Inc., Madison, Wisconsin, U.S.A., 2008.