Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information for

Synthesis, spectral characterization, and catalytic efficiency of aroylhydrazone-based Cu(II) complexes

Lahinakillathu Nishana ^a, Ayyamperumal Sakthivel ^a, M. R Prathapachandra Kurup ^{a*}, Krishna K Damodaran ^b, Antonysamy Kulandaisamy ^c, Maheswaran Sithambaresan ^d

^a Inorganic Materials & Heterogeneous Catalysis Laboratory, Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod, 671316, India

^b Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.

^c Department of Chemistry, Faculty of Science, Eastern University, Chenkalady, Sri Lanka
 ^d Department of Chemistry, Government Arts and Science College, Tamil Nadu, Sivakasi, India
 *E-mail: <u>sakthiveldu@gmail.com</u> /<u>sakthivelcuk@cukerala.ac.in /mrpcusat@gmail.com</u>
 ORCID information: <u>https://orcid.org/0000-0003-2330-5192</u>
 ORCID information: <u>https://orcid.org/0000-0002-9434-890X</u>

Scheme S1: Synthesis of di-2-pyridyl ketone-4-methoxybenzhydrazone monohydrate(DKMBH·H₂O) and 2-acetylpyrazine-4-methoxybenzhydrazone monohydrate(APMBH·H₂O

Hydrogen bonding interactions					
D–H···A	d(D-H) (Å)	$d(H \cdots A)$ (Å)	$d(D \cdots A)$ (Å)	<(DHA) (°)	
APMBH·H ₂ O					
N(4)–H(4)····O(3)	0.87	2.18	3.019(2)	159	
O(3)–H(3A)····N(2)#1	0.85	2.05	2.886(2)	167	
O(3)−H(3B)···O(1)#2 #1 =x, 1+y, z	0.85	2.06	2.876(2)	161	
#2 = 1-x, -y, -z					
Complex 4					
O(3)–H(3A)····O(5)#1	0.82(2)	2.16(2)	2.785(2)	133.0(18)	
O(3)–H(3B)…N(4)#2	0.84(2)	2.02(2)	2.852(2)	170.9(19)	
C(3)–H(3)····O(6)#3	0.93	2.31	3.181(2)	156	
#1 = -1 + x, y, z					
#2 = 1-x, -y, 2-z					
# 3 = x, y, 1+z					
D = donor, A = acceptor					

Table S1: Hydrogen bonding interactions in APMBH·H₂O and complex 4.

Cg …Cg interactions					
Cg···Cg	Cg···Cg(Å)	α(°)	β(°)		
APMBH·H ₂ O					
Cg(1)…Cg(2)#1	3.6099(11)	0.25(9)	18.8		
Cg(1) = N(1), C(1), C(2), N(2), C(3), C(4) Cg(2) = C(7), C(8), C(9), C(10), C(11), C(12) #1 = 1-x, -y, -z					
Complex 4					
Cg(1)…Cg(2)#1	3.9036(12)	11.38(9)	28.8		
Cg(1) = N(1), C(1), C(2), N(2), C(3), C(4)					
Cg(2) = C(7), C(8), C(9), C(10), C(11), C(12) #1 = 1-x,-y,2-z					
Cg, Centroid of the ring					
$\alpha(^{\circ}) =$ Dihedral angle between planes I and J					
$\beta(^{\circ})$ = Angle between Cg(I)···Cg(J) vector and Cg(J) perp					

Table S2: Cg \cdots Cg interactions parameters in APMBH·H₂O and complex4.

		Selectivity (%)				
Complex						
	Conversion	Cinnam-	Epoxy	Epoxy	Cinnamic	Benz-
	(%)	aldehyde	cinnam-	cinnamyl	acid	aldehyde
			aldehyde	alcohol		
[Cu(DKMB)Cl] (1)	79	74	1	3	1	21
[Cu(DKMB)NO ₃] (2)	26	81	5	1	1	12
[Cu(APMBH)Cl ₂] (3)	88	52	3	6	15	24
[Cu(APMB)NO ₃ (H ₂ O)] (4)	71	69	2	4	5	20

 Table S3: Catalytic study of various Cu(II) complexes on cinnamyl alcohol oxidation. #

[#] Reaction conditions: Solvent = 2mL, Complex 1 (Catalyst) = 12×10^{-3} mmol, Cinnamaldehyde (Substrate) = 132 µL (1 mmol), TBHP in water (oxidant) = 276 µL (2 mmol), t = 4 h; T = 70 °C.

Catalyst	Conversion (%)	Selectivity ^a (%)	Reaction Condition	Ref.
Cu(II) aroylhydrazone complexes	79	74	TBHP in water, 70 °C, 4 h, Acetonitrile	This paper
Cu(II)- triphenyl acetate/bipyridyl complex	91.5	6.6 ^b	H ₂ O ₂ , 70 °C, 6 h, water solvent	76
[Cu(PPh ₃)(L)] (where L = dianion tridentate Schiff bases)	60.23	100	N-methylmorpholine- N-oxide, 3 h, dichloromethane	77
Cu(II) Complexes of N ₆ O ₄ Macrocyclic Ligand	81	57	TEMPO, K ₂ CO ₃ (aq), 70 °C, 1 atm air	78
([Cu(OOC(C ₆ H ₅)Br) (C ₁₀ H ₉ N ₃)](ClO ₄)),([aqua (4-bromobenzoato) (2,2'dipyridylamine)copp er(II)](perchlorate))	90	10 °	H ₂ O ₂ , 70 °C, 6 h, water solvent	79
copper (II) complexes with (µ- diphenylphosphinato)- bridges	7	100	1 atm O ₂ , Room temperature, 7 h, acetonitrile solvent	80
[CuCl(HL ₁)(PPh ₃) ₂] (where HL ₁ = 3,3- diphenyl-1-(2,4- dichlorobenzoyl)thiourea	92 ^d	-	H ₂ O ₂ , 70 °C, 48 h, [bmim][PF ₆] solvent	81
Copper(II) complex of o- phenyldiamido ligand	85	100	Atm O ₂ , RT, 24h, DMF	82

 Table S4: Comparative study of existing reported catalytic system on cinnamyl alcohol oxidation

^a Selectivity of cinnamaldehyde; ^b The major product is benzaldehyde (84.9%);

^c The major product is benzaldehyde (74%); ^d The major product is cinnamic acid (100%)

Fig. S1: FT-IR spectra of DKMBH·H₂O, [Cu(DKMB)Cl] (1) and [Cu(DKMB)NO₃] (2).

Fig.S2: FT-IR spectra of APMBH·H₂O, [Cu(APMBH)Cl₂] (3) and [Cu(APMB)NO₃(H₂O)] (4).

Fig.S3: UV-Vis spectra of DKMBH·H₂O, APMBH·H₂O [Cu(DKMB)Cl] (1), [Cu(DKMB)NO₃] (2),[Cu(APMBH)Cl₂] (3) and [Cu(APMB)NO₃(H₂O)] (4).

Fig.S4: Expanded Vis spectra (500-900 nm) of [Cu(DKMB)Cl] (1), $[Cu(DKMB)NO_3]$ (2), $[Cu(APMBH)Cl_2]$ (3) and $[Cu(APMB)NO_3(H_2O)]$ (4).

Fig.S6:¹H NMR spectrum of APMBH·H₂O.

Fig.S7: Mass spectrum of DKMBH \cdot H₂O.

Fig.S8: Mass spectrum of APMBH \cdot H₂O.

Fig.S9: Mass spectrum of [Cu(DKMB)Cl].

Fig.S10: Mass spectrum of [Cu(DKMB)NO₃].

Fig.S11: Mass spectrum of [Cu(APMBH)Cl₂].

Fig.S12: Mass spectrum of [Cu(APMB)NO₃(H₂O)].

Fig.S13: TGA profile of (a) DKMBH·H₂O, (b) APMBH·H₂O, (c) [Cu(APMB)NO₃(H₂O)] (d) [Cu(DKMB)NO₃], (e) [Cu(APMBH)Cl₂] and (f) [Cu(DKMB)Cl].

Fig. S14: EPR spectrum of complex 2 in polycrystalline state at 298 K.

Fig. S15: EPR spectrum of complex 2 in DMF solution at 77 K.

Fig. S16: EPR spectrum of complex 3 in polycrystalline state at 298 K.

Fig. S17: EPR spectrum of complex 3 in DMF solution at 77 K.

Fig. S18: EPR spectrum of complex 4 in polycrystalline state at 298 K.

Fig. S19: EPR spectrum of complex 4 in DMF solution at 77 K.

Fig. S20: Effect of temperature on cinnamaldehyde oxidation over complex 1 catalyst.

Reaction Conditions: Solvent = 2 mL, complex 1 (Catalyst) = 12×10^{-3} mmol, Cinnamaldehyde (Substrate) = $132 \mu L$ (1 mmol), TBHP in water (oxidant)= $276 \mu L$ (2 mmol), t = 4 h.

(*Other products are epoxycinnamaldehyde, epoxycinnamyl alcohol and cinnamic acid)

Fig. S21: Effect of reaction time on cinnamaldehyde oxidation over complex 1 catalyst.

Reaction Conditions: Solvent = 2 mL, complex 1 (Catalyst) = 12×10^{-3} mmol, Cinnamaldehyde (Substrate) = $132 \mu L$ (1 mmol), TBHP in water (oxidant) = $276 \mu L$ (2 mmol), $T = 70 \circ$ C.

(*Other products are epoxycinnamaldehyde, epoxycinnamyl alcohol and cinnamic acid)

Fig. S22: EPR spectrum of complex 1 after adding TBHP