Supporting information

Binuclear Cobalt(II) complexes: Synthesis, structure, characterizations and catalytic applications in acceptorless dehydrogenation (AD) of primary alcohols into aldehydes

Adelew Estifanos filkale^{1*}, Manoj Kumar Gangwar², Indresh Kumar Pandey³, Ray Butcher⁴

¹Department of Chemistry, College of Computational & Natural Sciences, Hawassa University, P.O. Box 05, Hawassa, Ethiopia.

²Department of Chemistry, Faculty of Science, University of Allahabad (AoU), Prayagraj– 211002, Uttar Pradesh, India.

³Department of Chemistry, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur–273009, Uttar Pradesh, India.

⁴Department of Inorganic & Structural Chemistry, Howard University Washington DC 20059, USA

*Correspondence: Authors: *E-mail: adelewshenkora@gmail.com

Experimental Section:

Except where otherwise noted, all substances were commercially available and used in their natural state. Hexane, methanol, and ethyl acetate were obtained from commercial sources and used as reagent-grade solvents. Standard procedures were used to clean and degas the solvents. CDCl₃ was used as the solvent for ¹H NMR and ¹³C {¹H} NMR measurements on Bruker 400 MHz and 500 MHz spectrometers. Coupling constants (J) are expressed in Hz, and chemical shifts (δ) are expressed in ppm relative to TMS. Chemical shifts and solvent signals (CDCl₃, δ C 77.0 ppm, δH 7.26 ppm) that were used as references were converted to the TMS scale. Commercial aluminium sheets pre-coated with silica gel were used to monitor all of the reactions using analytical thin layer chromatography (TLC). Silica gel (200-400 mesh, Merck) was used for column chromatography. The abbreviations used for ¹H NMR spectra to indicate the signal multiplicity are singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublet (dd), doublet of triplet (dt), triplet of triplet (tt), multiplet (m), etc. The crystal data collection and refinement parameters are outlined in Tables 1 and 2. X-ray diffraction data were obtained using a Bruker P4 diffractometer outfitted with a SMART CCD detector. The structures were resolved by fullmatrix least-squares procedures on FP 2 P with SHELXTL after being initially solved by direct methods and conventional difference map techniques (Version 6.10). P30P. On a Rigaku Hg 724+ diffractometer, X-ray diffraction data for binuclear cobalt(II) complexes (1-3) were gathered. By visiting www.ccdc.cam.ac.uk/data request/cif, you can obtain these data from the Cambridge Crystallographic Data Center for free.

The FT-IR data for binuclear cobalt(II) complexes were captured using a Perkin-Elmer FT-IR 2000 spectrometer using KBr discs with a wavelength range of 4000–400 cm⁻¹. The electronic spectra were captured using a Perkin Elmer Lambda 950 UV/VIS Spectrometer in

Dichloromethane (CH₂Cl₂) solvent. Micromass Q-Tof and Bruker Maxis Impact Spectrometers were used for the mass spectrometry measurements. An electrochemistry system made by PAR called the model 273A was used to measure cyclic voltammetry. Three electrodes a working platinum disc (2 mm), auxiliary electrodes, and a saturated Calomel Electrode (SCE) were used. Thermo Finnigan FLASH EA 1112 SERIES (CHNS) Elemental Analyzer was used to perform the elemental analysis. A Quantum Design MPMS XL-5 SQUID magnetometer was used to perform variable temperature susceptibility measurements on ground polycrystalline samples of binuclear cobalt(II) complexes **1** and **2** in the temperature range 5-300 K with an applied magnetic field of 0.1 Ton. Using tables of Pascal's constants, the susceptibility data were adjusted for the sample holders previously measured under the same circumstances and for the contributions of the sample's diamagnetic field.

1. Experimental Procedures and Characterizations

1.1 General procedure (A) for binuclear Co(II) catalysed acceptorless dehydrogenation (AD) of primary alcohols into aldehydes: To an oven-dried reaction tube equipped with magnetic stir bar added Binuclear Co(II) catalyst-2 (6.4 mg, 0.005 mmol, 1 mol%), KOH (1.4 mg, 0.025 mmol, 5 mol%) and primary alcohol (54.0 mg, 0.5 mmol, 1 eq) followed by addition of 2 mL of toluene under nitrogen atmosphere. The closed reaction tube containing the reaction mixture was placed in a preheated oil bath and stirred at 80°C for 24 hours. After completion of the reaction time, the reaction mixture was cooled down to room temperature. The crude mixture was purified by flash column chromatography using silica gel as stationary phase and hexane/ethyl acetate (95:5 v/v) as an eluent to afford the pure ketone product **5a** as colorless oil in 90 % (47.7 mg) yield.

1.2 Characterization of all catalysis compounds:

Benzaldehyde (5a):

Compound **5a** was prepared according to the general procedure **A** from its Corresponding alcohol (54.0 mg, 0.5 mmol, 1 eq) and the reaction mixture was purified by flash column chromatography (5% EtOAc/Hexane) to afford **5a** as colorless oil in 90 % (47.7 mg) yield. The NMR data of **5a** is in accordance with the literature. ^[1-2]

¹**H NMR** (600 MHz, CDCl₃): *δ* 9.97 (s, 1H), 7.97 (dd, J = 161.2, 7.7 Hz, 2H), 7.60 – 7.39 (m, 3H).

¹³C {¹H} NMR (151 MHz, CDCl₃): *δ* 192.21, 135.98, 134.13, 129.36, 128.62.

Terephthalaldehyde (5b):

Compound **5b** was prepared according to the general procedure **A** from its corresponding di-alcohol (69.0 mg, 0.5 mmol, 1 eq) and the reaction mixture was purified by flash column chromatography (5% EtOAc/Hexane)

to afford **5b** as white crystalline powder in 92 % (65.3 mg) yield. The NMR data of **5b** is in accordance with the literature.^[3]

¹**H NMR** (600 MHz, CDCl₃): *δ* 10.05 (s, 2H), 7.96 (s, 4H).

¹³C {¹H} NMR (151 MHz, CDCl₃): *δ* 191.57, 139.96, 130.07.

4-hydroxybenzaldehyde (5c):

Compound **5c** was prepared according to the general procedure **A** from its corresponding alcohol (62.0 mg, 0.5 mmol, 1 eq) and the reaction mixture was purified by flash column chromatography (5% EtOAc/Hexane) to afford

5c as yellow powder in 94 % (57.3 mg) yield. The NMR data of **5c** is in accordance with the literature.^[1-2]

¹**H NMR** (600 MHz, CDCl₃): δ 9.85 (s, 1H), 7.81 (d, J = 7.2 Hz, 2H), 6.98 (d, J = 7.2 Hz, 2H), 1.89 (s, 1H).

¹³C {¹H} NMR (151 MHz, CDCl₃): *δ* 191.42, 161.94, 132.56, 129.62, 116.03.

3-methoxybenzaldehyde (5d):

Compound 5d was prepared according to the general procedure A from its corresponding alcohol (69.0 mg, 0.5 mmol, 1 eq) and the reaction mixture was purified by flash column chromatography (5% EtOAc/Hexane) to afford 5d as colorless oil in 98 % (66.6 mg) yield. The NMR data of 5d is in accordance with the literature.^[2] ¹H NMR (600 MHz, CDCl₃): δ 9.93 (s, 1H), 7.45 – 7.32 (m, 3H), 7.13 (d, J = 7.7 Hz, 1H), 3.80 (s, 3H).

¹³C {¹H} NMR (151 MHz, CDCl₃): δ 191.84, 159.73, 137.41, 129.65, 122.97, 120.95, 111.89, 54.95.

4-chlorobenzaldehyde (5e):

Compound **5e** was prepared according to the general procedure **A** from its corresponding alcohol (71.0 mg, 0.5 mmol, 1 eq) and the reaction mixture was purified by flash column chromatography (5% EtOAc/Hexane) to afford

5e as light yellow crystalline powder in 78 % (54.6 mg) yield. The NMR data of **5e** is in accordance with the literature.^[2]

¹H NMR (600 MHz, CDCl₃): δ 9.97 (s, 1H), 7.80 (d, J = 8.2 Hz, 2H), 7.47 (d, J = 8.2 Hz, 2H).
¹³C {¹H} NMR (151 MHz, CDCl₃): δ 190.75, 140.72, 134.70, 130.82, 129.34.

5-bromo-2-hydroxybenzaldehyde (5f):

Br

Compound 5f was prepared according to the general procedure A from its corresponding alcohol (101 mg, 0.5 mmol, 1 eq) and the reaction mixture OH

was purified by flash column chromatography (5% EtOAc/Hexane) to afford **5f** as pale yellow solid in 72 % (72.0 mg) yield. The NMR data of **5f** is in accordance with the literature.^[2] **¹H NMR** (600 MHz, CDCl₃): δ 10.91 (s, 1H), 9.82 (s, 1H), 7.60 (d, J = 42.4 Hz, 2H), 6.88 (s,

1H).

¹³C {¹H} NMR (151 MHz, CDCl₃): δ 195.28, 160.33, 139.47, 135.45, 121.57, 119.63, 111.18.
3-nitrobenzaldehyde (5g):

Compound **5h** was prepared according to the general procedure **A** from its corresponding alcohol (76.5 mg, 0.5 mmol, 1 eq) and the reaction mixture was purified by flash column chromatography (3% EtOAc/Hexane) to

afford **5h** as brownish crystalline powder in 69 % (52.0 mg) yield. The NMR data of **5h** is in accordance with the literature.^[1]

¹**H NMR** (600 MHz, CDCl₃): δ 10.05 (s, 1H), 8.57 (s, 1H), 8.38 (d, J = 8.2 Hz, 1H), 8.18 (d, J = 7.7 Hz, 1H), 7.74 (t, J = 7.9 Hz, 1H).

¹³C {¹H} NMR (151 MHz, CDCl₃): δ 189.76, 148.36, 137.07, 134.68, 130.23, 128.22, 123.80.

2-hydroxy-5-nitrobenzaldehyde (5h):

Compound **5g** was prepared according to the general procedure **A** from its corresponding alcohol (84.5 mg, 0.5 mmol, 1 eq) and the reaction mixture was purified by flash column chromatography (3% EtOAc/Hexane) to

afford **5g** as reddish yellow powder in 74 % (61.7 mg) yield. The NMR data of **5g** is in accordance with the literature.^[1]

¹H NMR (600 MHz, CDCl₃): δ 11.59 (s, 1H), 10.00 (s, 1H), 8.56 (s, 1H), 8.38 (d, J = 9.0 Hz, 1H), 7.11 (d, J = 9.0 Hz, 1H).

¹³C {¹H} NMR (151 MHz, CDCl₃): δ 13C NMR (151 MHz, CDCl3) δ 195.52, 166.04, 140.53, 131.58, 129.70, 119.33, 118.91.

1-naphthaldehyde (5i):

Compound 5i was prepared according to the general procedure A from its corresponding alcohol (79.0 mg, 0.5 mmol, 1 eq) and the reaction mixture was purified by flash column chromatography (5% EtOAc/Hexane) to afford 5i as white solid in 88 % (68.6 mg) yield. The NMR data of 5i is in accordance with the literature.^[1]
¹H NMR (600 MHz, CDCl₃): δ 10.22 (s, 1H), 9.17 (d, J = 8.7 Hz, 1H), 7.86 (d, J = 8.3 Hz, 1H), 7.73 (d, J = 7.7 Hz, 2H), 7.55 (t, J = 7.6 Hz, 1H), 7.44 (t, J = 7.4 Hz, 1H), 7.38 (t, J = 7.6 Hz, 1H).

¹³C {¹H} NMR (151 MHz, CDCl₃): δ 193.21, 136.31, 134.84, 133.22, 130.81, 130.00, 128.69, 128.10, 126.51, 124.41.

2-naphthaldehyde (5j):

Compound **5j** was prepared according to the general procedure **A** from its corresponding alcohol (79.0 mg, 0.5 mmol, 1 eq) and the reaction mixture was purified by flash column chromatography (5% EtOAc/Hexane) to afford **5j** as pink crystalline solid in 89 % (69.4 mg) yield. The NMR data of **5j** is in accordance with the literature.^[1]

¹**H NMR** (600 MHz, CDCl₃): δ 10.02 (s, 1H), 8.11 (s, 1H), 7.83 (dd, J = 14.7, 7.8 Hz, 2H), 7.75 (s, 2H), 7.52 (s, 1H), 7.46 (s, 1H).

¹³C {¹H} NMR (151 MHz, CDCl₃): δ 191.72, 135.91, 134.07, 133.62, 132.14, 129.09, 128.67, 128.59, 127.63, 126.65, 122.20.

Furan-2-carbaldehyde (5k):

Compound **5k** was prepared according to the general procedure **A** from its corresponding alcohol (49.0 mg, 0.5 mmol, 1 eq) and the reaction mixture was purified by flash column chromatography (5% EtOAc/Hexane) to afford **5k** as colorless liquid in 63 % (30.2 mg) yield. The NMR data of **5k** is in accordance with the literature.^[2]

¹**H NMR** (600 MHz, CDCl₃): *δ* 9.67 (s, 1H), 7.71 (s, 1H), 7.27 (s, 1H), 6.62 (s, 1H).

¹³C {¹H} NMR (151 MHz, CDCl₃): δ 177.88, 152.87, 148.07, 121.10, 112.54.

Thiophene-2-carbaldehyde (5l):

Compound **51** was prepared according to the general procedure **A** from its corresponding alcohol (57.0 mg, 0.5 mmol, 1 eq) and the reaction mixture was purified by flash column chromatography (5% EtOAc/Hexane) to afford **51** as colorless liquid in 61 % (34.2 mg) yield. The NMR data of **51** is in accordance with the literature.^[2] **¹H NMR** (600 MHz, CDCl₃): δ 9.94 (s, 1H), 7.82 – 7.73 (m, 2H), 7.21 (s, 1H), 2.20 (s, 1H). **¹³C** {¹H} NMR (151 MHz, CDCl₃): δ 182.98, 143.99, 136.29, 135.10, 128.28.

Analytical data for all the compounds:

Figure S1. ¹H NMR spectrum of the H_2L^1 in CDCl₃.

Figure S2. Expanded ¹H NMR spectrum of the H_2L^1 in CDCl₃.

Figure S3. HRMS spectrum of the H_2L^1 in CHCl₃.

Figure S4. HRMS spectrum of the $[Co(II)H_2L^1]$ complex-1 in CHCl₃.

Eager 300 Report

Page: 1 Sample: PG-AE-3-51-2 (PG-AE-3-51-2)

Method Name	:	PG-SRM-15122014
Method File	:	D:\CHNS-2014\PG-SRM-15122014.mth
Chromatogram	:	PG-AE-3-51-2
Operator ID	:	Sonali
Analysed	:	12/15/2014 16:16
Sample ID	:	PG-AE-3-51-2 (# 19)
Analysis Type	:	UnkNown (Area)

Calib. method : using 'K Factors'

!!! Warning missing one or more peaks.

Element Name	8	Ret.Time	Area	BC	Area ratio	K factor
Nitrogen (5.2540	43	74913	FU	29.875300	.149112E+07
2	0.0000	57	265722	FU		0.0000
Carbon	71.7856	66	2238051	FU	1.000000	.275501E+07
Hydrogen	5.2458	181	456530	RS	4.902309	.707107E+07
Totals	82.2854		3035216			

Figure S5. CHN analysis of the $[Co(II)H_2L^1]$ complex-1.

Figure S6. FT-IR spectrum of the $[Co(II)H_2L^1]$ complex-1.

Figure S7. ¹H NMR spectrum of the ligand H_2L^2 in CDCl₃.

Figure S8. ¹³C{¹H} NMR spectrum of the ligand H_2L^2 in CDCl₃.

Figure S9. HRMS spectrum of the ligand H_2L^2 in CHCl₃...

Figure S10. HRMS spectrum of the [Co(II)H₂L²] complex-2 in CHCl₃.

•

Figure S11. CHN analysis of the $[Co(II)H_2L^2]$ complex-2.

Figure S12. FT-IR spectrum of the $[Co(II)H_2L^2]$ complex-2.

Figure S13. ¹H NMR spectrum of the ligand H_2L^3 in CDCl₃.

Figure S14. Expanded ¹H NMR spectrum of the ligand H_2L^3 in CDCl₃.

Figure S15. HRMS spectrum of the ligand H_2L^3 in CHCl₃.

Figure S16. HRMS spectrum of the $[Co(II)H_2L^3]$ complex-3 in CHCl₃.

SAIF-IIT BOMBAY

Figure S17. CHN analysis of the $[Co(II)H_2L^3]$ complex-3.

Figure S18. FT-IR spectrum of the $[Co(II)H_2L^3]$ complex-3.

Compounds	v(O–H)/H ₂ O (cm ⁻¹)	v(C=N) (cm ⁻¹)	v(C–O) (cm ⁻¹)	v(C=C) (cm ⁻¹)
Ligand (H ₂ L ¹)	3440	1618	1203	1427
Co(II) complex-1	3446	1599	1143	1421
Co(II) complex-2	3450	1585	1174	1418
Co(II) complex-3	3435	1600	1169	1424

Table 1 S19.	Important FT-IR bands of the ligand H_2L^1 and binuclear Co(II) complexes (1-3)	
Table 1 517.	important i 1-itt bands of the figure figure figure and bindereal Co(if) complexes (1 5)	

Compounds	λ_{max} , nm	absorbance	ε, M ⁻¹ cm ⁻¹	transitions
Ligand (H.L. ¹)	257	0.27	27000	— \ — *
	350	0.12	12000	$n \rightarrow n^*$ $n \rightarrow \pi^*$
Ligand (H ₂ L ²)	264	0.26	26000	$\pi \rightarrow \pi^*$
	341	0.11	11000	$n \rightarrow \pi^*$
	263	0.27	27000	$\pi \rightarrow \pi^*$
Ligand (H ₂ L ³)	350	0.11	11000	$n \rightarrow \pi^*$
Co(II) complex-1	236	0.71	10,600	$\pi \rightarrow \pi^*$
	277	0.33	4,900	$n \rightarrow \pi^*$
	410	0.21	3,100	$d \rightarrow \pi^*$
Co(II) complex-2	233	0.78	11600	$\pi \rightarrow \pi^*$
	277	0.36	5400	$n \rightarrow \pi^*$
	400	0.21	3100	$d \rightarrow \pi^*$
Co(II) complex-3	233	0.84	12500	$\pi \rightarrow \pi^*$
	275	0.39	5800	$n \rightarrow \pi^*$
	400	0.22	3200	$d \rightarrow \pi^*$

Table 2 S20. UV–Visible spectra of ligands $(H_2L^1, H_2L^2 \text{ and } H_2L^3)$ and binuclear cobalt(II) complexes (1-3)

Compounds	Co(II) complex-1 (CH ₃ CN.H ₂ O)	Co(II) complex-2 (CH ₂ Cl ₂)	Co(II) complex-3 (CH ₃ CN)
Moiety formula	$C_{60} H_{52} Co_2 N_4 O_4.C_2 H_3 N.H_2$	C ₆₈ H ₆₈ Co ₂ N ₄ O ₄ .CH ₂ Cl ₂	$C_{76}H_{84}Co_2N_4O_{4.}C_2H_3N$
Sum formula	$C_{62}H_{57}Co_2N_5O_5$	$C_{69}H_{70}Cl_{2}Co_{2}N_{4}O_{4}$	$C_{78}H_{87}Co_2N_5O_4$
Crystal system	Orthorhombic	Triclinic	Triclinic
Formula weight	1070.041	1208.121	1276.458
Crystal color	Green	Green	Green
Space group	$P2_{1}2_{1}2_{1}$	P -1	P-1
a/Å	12.078(2)	12.2854(15)	14.022(9)
b/Å	13.095(2)	13.8933(19)	16.557(10)
c/Á	33.434(5)	18.666(3)	16.724(11)
α/\circ	90	85.816(4)	105.310(8)
β/∘	90	80.738(5)	108.728(5)
γ/∘	90	78.222(4)	100.126(5)

 Table 3 S21.
 X-ray crystallographic data for the binuclear cobalt(II) complexes (1-3)

Ζ	4	2	2
temperature (K)	100(2)	100(2)	100(2)
Radiation (λ, Å)	0.71075	0.71075	0.71075
ρ(calcd.) gcm ⁻³	1.344	1.305	1.247
F000	2236.205	1266.712	1354.189
Mu (mm ⁻¹)	0.683	0.678	0.541
θ max, deg.	25.000	25.000	25.000
No. of data	9179	10814	12313
h, k, l max	14, 15, 39	14, 16, 22	14, 15, 39
No. of parameters	679	730	803
Data completeness	0.98	0.995	0.991
R1	0.0414	0.0474	0.1053

wR2	0.1041	0.1205	0.2390
GOF	0.9260	1.0408	1.0376
CCDC	1049317	1044421	978972
Flack Parameter	0.249(15)	n/a	n/a

2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

Figure S22. ¹H NMR spectrum of 5a in CDCl₃.

Figure S23. ${}^{13}C{}^{1}H$ NMR spectrum of 5a in CDCl₃.

Figure S24. ¹H NMR spectrum of 5b in CDCl₃.

Figure S25. ${}^{13}C{}^{1}H$ NMR spectrum of 5b in CDCl₃.

Figure S26. ¹H NMR spectrum of 5c in CDCl₃.

Figure S27. ${}^{13}C{}^{1}H$ NMR spectrum of 5c in CDCl₃.

Figure S28. ¹H NMR spectrum of 5d in CDCl₃.

Figure S29. ${}^{13}C{}^{1}H$ NMR spectrum of 5d in CDCl₃.

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

Figure S30. ¹H NMR spectrum of 5e in CDCl₃.

Figure S31. ${}^{13}C{}^{1}H$ NMR spectrum of 5e in CDCl₃.

Figure S32. ¹H NMR spectrum of 5f in CDCl₃.

Figure S33. ${}^{13}C{}^{1}H$ NMR spectrum of 5f in CDCl₃.

13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

Figure S34. ¹H NMR spectrum of 5g in CDCl₃.

Figure S35. ${}^{13}C{}^{1}H$ NMR spectrum of 5g in CDCl₃.

4.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

Figure S36. ¹H NMR spectrum of 5h in CDCl₃.

Figure S37. ${}^{13}C{}^{1}H$ NMR spectrum of 5h in CDCl₃.

3.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

Figure S38. ¹H NMR spectrum of 5i in CDCl₃.

Figure S39. ${}^{13}C{}^{1}H$ NMR spectrum of 5i in CDCl₃.

Figure S40. ¹H NMR spectrum of 5j in CDCl₃.

Figure S41. ${}^{13}C{}^{1}H$ NMR spectrum of 5j in CDCl₃.

13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

Figure S42. ¹H NMR spectrum of 5k in CDCl₃.

Figure S43. ${}^{13}C{}^{1}H$ NMR spectrum of 5k in CDCl₃.

13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

Figure S44. ¹H NMR spectrum of 5l in CDCl₃.

Figure S45. ${}^{13}C{}^{1}H$ NMR spectrum of 5l in CDCl₃.

References:

- 1. (a) Zhang, J.; Gandelman, M.; Shimon, L. J. W.; Rozenberg, H.; Milstein, D. Electron-Rich, Bulky Ruthenium PNP-Type Complexes Acceptorless Catalytic Alcohol Dehydrogenation. Organometallics 2004, 23, 4026-4033. (b) Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Facile Conversion of Alcohols into Esters and Dihydrogen Catalyzed by New Ruthenium Complexes. J. Am. Chem. Soc. 2005, 127, 10840-10841. (c) Dutta, I.; Sarbajna, A.; Pandey, P.; Rahaman, S. M. W.; Singh, K.; Bera, J. K. Acceptorless Dehydrogenation of Alcohols on a Diruthenium(II,II) Platform. Organometallics 2016, 35, 1505-1513. (d) Wang, Z.; Pan, B.; Liu, Q. B.; Yue, E. L.; Solan, G. A.; Ma, Y. P.; Sun, W.-H. Efficient Acceptorless Dehydrogenation of Secondary Alcohols to Ketones Mediated by a PNN-Ru(II) Catalyst. Catal. Sci. Technol. 2017, 7, 1654-1661. (e) Wang, Q.; Chai, H.; Yu, Z. Dimeric Ruthenium(II)- NNN Complex Catalysts Bearing a Pyrazolyl-Pyridylamino-Pyridine Ligand for Transfer Hydrogenation of Ketones and Acceptorless Dehydrogenation of Alcohols. Organometallics 2017, 36, 3638-3644. (f) Hao, Z.; Liu, K.; Feng, Q.; Dong, Q.; Ma, D.; Han, Z.; Lu, G.-L.; Lin, J. Ruthenium(II) Complexes Bearing Schiff Base Ligands for Efficient Acceptorless Dehydrogenation of Secondary Alcohols. Chin. J. Chem. 2021, 39, 121-128. (g) Komiya, N.; Nakae, T.; Sato, H.; Naota, T. Water-Soluble Diruthenium Complexes Bearing Acetate and Carbonate Bridges: Highly Efficient Catalysts for Aerobic Oxidation of Alcohols in Water. Chem. Commun. 2007, 4829-4831.
- Han, L.; Xing, P.; Jiang, B. Selective Aerobic Oxidation of Alcohols to Aldehydes, Carboxylic Acids, and Imines Catalyzed by a Ag-NHC Complex. Org. Lett. 2014, 16, 3428–3431.