Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Solid-gas synthesis of stable V₃S₄ nanoflakes: electrochemical characterization as Li-ion battery anode

Balla Rekha Madhuri^{4,1}, Harish Kumar Adigilli^{4,1}, Anirudha Karati¹, Joydip Joardar¹, R. Vijay¹, Tata Narasinga Rao¹ and Ramkrishna Sahoo^{1,2*}

¹Centre for Nanomaterials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, Telangana, India.

²Department of Science and Technology, Ministry of Science and Technology, New Delhi, India

^{*b*}B. R. Madhuri and H. K. Adigilli have made equal contribution to the paper.

Corresponding Author: <u>sahooramkrishna2010@gmail.com</u> (Dr. Ramkrishna Sahoo)

Materials:

All the chemicals used in this work were of AR grade. Vanadium oxide (V_2O_5) poweder was purchased from Sigma-Aldrich with 99.95% purity. Ammonium sulfide solution of 20 wt% and Sulfur powder with 98% purity were purchased from Loba chemicals. The electrolyte solution was bought from the Sigma-Aldrich and the Whatman glass microfiber (GF/D) was used as the separator.

Figure S1: Rietveld refinement of vanadium sulfide (from Fig.1a in the manuscript).

Rietveld analysis carried out using MDI JADE PRO, revealed the phase fraction of V_3S_4 and V_5S_8 are around 93 wt.%, and wt.7% respectively. There were no vanadium oxide phase peaks found to be present from Rietveld refinement.

Figure S2: Comparative XRD plot of the as-prepared V_3S_4 (as-prepared and after six months exposure in air).

Figure S3: Comparative XRD profile of vanadium sulfide prepared from chemical modified V_2O_5 and ball milled V_2O_5 with different sulfur powder (A) 1:25 and (B) 1:50.

Figure S4: X-ray photoelectron spectroscopy (XPS) of the as-prepared V_3S_4 nanoflakes; (A) wide range spectrum and (B) narrow range V 2p with O 1s spectra.

Figure S5: EDS spectra of (A) chemically modified product and (V) V_3S_4 nanoflakes.

Figure S6: The FESEM image of the vanadium sulfide sample prepared by ball-milled V_2O_5 precursor (without chemical modification).

Table S1: Various synthesis strategies and comparative specific capacity values of the different V_3S_4 and its composite.

Materials	Synthesis strategy	Precursors and synthesis parameters	Specific capacity (mA h g ⁻¹) at specific current (mA g ⁻¹) as LIB anode	Ref.
V ₃ S ₄ -3D graphene	Hydrothermal followed by annealing	Hydrothermal: ammonium vanadate and ammonia Sulfidation: H ₂ S gas and Argon, 900 °C	1165 at 0.07	S1

V ₃ S ₄ @C nanosheets	Hydrothermal followed by sulfidation	Hydrothermal: V ₂ O ₅ powder, 1, 4- benzenedicarboxylic acid and ascorbic acid Sulfidation : thioacetamide, nitrogen gas, 500 °C	1065 at 0.1	S2
V ₃ S ₄ /carb on	Electrospinnin g followed by thermal sulfidation	Electrospinning: vanadium(V)oxytriisopr opoxide and Polyvinyl acetate Sulfidation: sulfur, argon and hydrogen gas, 800 °C	790 at 0.01	S3
V ₃ S ₄ /N,S- GO	Hydrothermal followed by annealing	Hydrothermal: NH ₄ VO ₃ and (NH ₂) ₂ CS, graphene oxides Sulfidation : Argon gas, 600 °C	1150 at 0.05	S4
V ₃ S ₄ nanoflakes	Hydrothermal followed by solid-gas reaction	Hydrothermal: V ₂ O ₅ powder, (NH ₄) ₂ S Sulfidation: sulfur and hydrogen gas, 500 °C	781 at 0.025	This work

References:

- S1 Q. Liu, W. Yao, L. Zhan, Y. Wang and Y. A. Zhu, *Electrochim. Acta*, 2018, 261, 35–41.
- S2 Y. Liu, Z. Sun, X. Sun, Y. Lin, K. Tan, J. Sun, L. Liang, L. Hou and C. Yuan, Angew. Chemie Int. Ed., 2020, 59, 2473–2482.
- S. Husmann, Ö. Budak, A. Quade, A. Frank, A. Kruth, C. Scheu, A. Tolosa and V. Presser, J. Power Sources, 2020, 450, 227674.
- S4 N. Wu, D. Miao, X. Zhou, L. Zhang, G. Liu, D. Guo and X. Liu, *Nanomaterials*, 2019, 9, 1638.